DOI QR코드

DOI QR Code

Large-scale Atmospheric Patterns associated with the 2018 Heatwave Prediction in the Korea-Japan Region using GloSea6

  • Jinhee Kang (Division of Science Education and Institute of Fusion Science, Jeonbuk National University) ;
  • Semin Yun (Division of Science Education and Institute of Fusion Science, Jeonbuk National University) ;
  • Jieun Wie (Division of Science Education and Institute of Fusion Science, Jeonbuk National University) ;
  • Sang-Min Lee (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Johan Lee (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Baek-Jo Kim (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Byung-Kwon Moon (Division of Science Education and Institute of Fusion Science, Jeonbuk National University)
  • Received : 2024.02.20
  • Accepted : 2024.02.28
  • Published : 2024.02.29

Abstract

In the summer of 2018, the Korea-Japan (KJ) region experienced an extremely severe and prolonged heatwave. This study examines the GloSea6 model's prediction performance for the 2018 KJ heatwave event and investigates how its prediction skill is related to large-scale circulation patterns identified by the k-means clustering method. Cluster 1 pattern is characterized by a KJ high-pressure anomaly, Cluster 2 pattern is distinguished by an Eastern European high-pressure anomaly, and Cluster 3 pattern is associated with a Pacific-Japan pattern-like anomaly. By analyzing the spatial correlation coefficients between these three identified circulation patterns and GloSea6 predictions, we assessed the contribution of each circulation pattern to the heatwave lifecycle. Our results show that the Eastern European high-pressure pattern, in particular, plays a significant role in predicting the evolution of the development and peak phases of the 2018 KJ heatwave approximately two weeks in advance. Furthermore, this study suggests that an accurate representation of large-scale atmospheric circulations in upstream regions is a key factor in seasonal forecast models for improving the predictability of extreme weather events, such as the 2018 KJ heatwave.

Keywords

Acknowledgement

This present paper is a part of the first author's M.S. thesis at Jeonbuk National University. This work was supported by the Korea Meteorological Administration Research and Development Program under Grant KMI2020-01212 and the National Research Foundation of Korea (NRF) grant funded by the Government of Korea (MSIT) (No. 2022R1A2C1008858).

References

  1. Barriopedro, D., Garcia-Herrera, R., Ordonez, C., Miralles, D. G., and Salcedo-Sanz, S., 2023, Heat waves: Physical understanding and scientific challenges. Reviews of Geophysics, 61, doi:10.1029/2022RG000780.
  2. Choi, N., Lee, M. I., Cha, D. H., Lim, Y. K., and Kim, K. M., 2020, Decadal changes in the interannual variability of heat waves in East Asia caused by atmospheric teleconnection changes. Journal of Climate, 33, 1505-1522, doi:10.1175/Jcli-D-19-0222.1.
  3. Christidis, N., Jones, G. S., and Stott, P. A., 2015, Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nature Climate Change, 5, 46-50, doi:10.1038/Nclimate2468.
  4. Deng, K. Q., Yang, S., Ting, M. F., Lin, A. L., and Wang, Z. Q., 2018, An intensified mode of variability modulating the summer heat waves in eastern Europe and northern China. Geophysical Research Letters, 45, 11361-11369, doi:10.1029/2018gl079836.
  5. Ha, K.-J., Yeo, J.-H., Seo, Y.-W., Chung, E.-S., Moon, J.-Y., Feng, X., Yang-Won, L., and Ho, C.-H., 2020, What caused the extraordinarily hot 2018 summer in Korea? Journal of the Meteorological Society of Japan, 98(1), 153-167. https://doi.org/10.2151/jmsj.2020-009
  6. Hartigan, J. A., and Wong, M. A., 1979, Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108. https://doi.org/10.2307/2346830
  7. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J. N., 2020, The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049, doi:10.1002/qj.3803.
  8. Hsu, P. C., Qian, Y. T., Liu, Y., Murakami, H., and Gao, Y. X., 2020, Role of abnormally enhanced MJO over the western Pacific in the formation and subseasonal predictability of the record-breaking northeast Asian heatwave in the summer of 2018. Journal of Climate, 33, 3333-3349, doi:10.1175/Jcli-D-19-0337.1.
  9. Kang, J., 2024, Anomalous high pressure pattern in eastern Europe as a key to predicting the 2018 East Asia heatwave in GloSea6. M.S. thesis, Jeonbuk National University, Jeonju, Korea, 29 p. (in Korean)
  10. Kim, H., Lee, J., Hyun, Y.-K., and Hwang, S.-O., 2021a, The KMA Global Seasonal Forecasting System (GloSea6) -Part 1: Operational system and improvements. Atmosphere. Korean Meteorological Society, 31(3), 341-359.
  11. Kim, H. K., Moon, B. K., Kim, M. K., and Kwon, M., 2020, Dynamic mechanisms of summer Korean heat waves simulated in a long-term unforced community climate system model version 3. Atmospheric Science Letters, 21, e973, doi:10.1002/asl.973.
  12. Kim, H. K., Moon, B. K., Kim, M. K., Park, J. Y., and Hyun, Y. K., 2021b, Three distinct atmospheric circulation patterns associated with high temperature extremes in South Korea. Scientific Reports, 11, 12911, doi:10.1038/s41598-021-92368-9.
  13. Kueh, M. T., and Lin, C. A. Y., 2020, The 2018 summer heatwaves over northwestern Europe and its extendedrange prediction. Scientific Reports, 10, 19283, doi:10.1038/s41598-020-76181-4.
  14. Lee, H.-D., Min, K.-H., Bae, J.-H., and Cha, D.-H., 2020, Characteristics and comparison of 2016 and 2018 heat wave in Korea. Atmosphere, 30(1), 1-15, doi:10.14191/Atmos.2020.30.1.001.
  15. Lee, W. S., and Lee, M. I., 2016, Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. International Journal of Climatology 36, 4815-4830, doi:10.1002/joc.4671.
  16. Lesk, C., Rowhani, P., and Ramankutty, N., 2016, Influence of extreme weather disasters on global crop production. Nature, 529, 84-87, doi:10.1038/nature16467.
  17. Lorenz, R., Jaeger, E. B., and Seneviratne, S. I., 2010, Persistence of heat waves and its link to soil moisture memory. Geophysical Research Letters, 37, L09703, doi:10.1029/2010gl042764.
  18. Maloney, E. D., Gettelman, A., Ming, Y., Neelin, J. D., Barrie, D., Mariotti, A., Chen, C. C., Coleman, D. R. B., Kuo, Y. H., Singh, B., Annamalai, H., Berg, A., Booth, J. F., Camargo, S. J., Dai, A. G., Gonzalez, A., Hafner, J., Jiang, X. A., Jing, X. W., Kim, D., Kumar, A., Moon, Y., Naud, C. M., Sobel, A. H., Suzuki, K., Wang, F. C., Wang, J. H., Wing, A. A., Xu, X. B., and Zhao, M., 2019, Process-oriented evaluation of climate and weather forecasting models. Bulletin of the American Meteorological Society, 100, 1665-1686, doi:10.1175/Bams-D-18-0042.1.
  19. Meehl, G. A., and Tebaldi, C., 2004, More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994-997, doi:DOI 10.1126/science.1098704.
  20. Min, S. K., Kim, Y. H., Lee, S. M., Sparrow, S., Li, S., Lott, F. C., and Stott, P. A., 2020, Quantifying human impact on the 2018 summer longest heat wave in South Korea. Bulletin of the American Meteorological Society, 101, S103-S108, doi:10.1175/Bams-D-19-0151.1.
  21. Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and de Arellano, J. V. G., 2014, Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nature Geoscience, 7, 345-349, doi:10.1038/Ngeo2141.
  22. Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., Counsell, C. W., Dietrich, B. S., Johnston, E. T., Louis, L. V., Lucas, M. P., McKenzie, M. M., Shea, A. G., Tseng, H., Giambelluca, T., Leon, L. R., Hawkins, E., and Trauernicht, C., 2017, Global risk of deadly heat. Nature Climate Change, 7, 501-506, doi:10.1038/Nclimate3322.
  23. Noh, E., Kim, J., Jun, S. Y., Cha, D. H., Park, M. S., Kim, J. H., and Kim, H. G., 2021, The role of the Pacific-Japan pattern in extreme heatwaves over Korea and Japan. Geophysical Research Letters, 48, doi:10.1029/2021GL093990.
  24. Park, J., and Chae, Y., 2020, Analysis of heat-related illness and excess mortality by heat waves in South Korea in 2018. Journal of the Korean Geographical Society, 55(4), 391-408.
  25. Russo, S., Sillmann, J., and Fischer, E. M., 2015, Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 10, 124003, doi:10.1088/1748-9326/10/12/124003.
  26. Schaller, N., Sillmann, J., Anstey, J., Fischer, E. M., Grams, C. M., and Russo, S., 2018, Influence of blocking on northern European and western Russian heatwaves in large climate model ensembles. Environmental Research Letters, 13, 054015, doi:10.1088/1748-9326/aaba55.
  27. Seo, Y. W., Ha, K. J., and Park, T. W., 2021, Feedback attribution to dry heatwaves over East Asia. Environmental Research Letters, 16, 064003, doi:10.1088/1748-9326/abf18f.
  28. Shimpo, A., Takemura, K., Wakamatsu, S., Togawa, H., Mochizuki, Y., Takekawa, M., Tanaka, S., Yamashita, K., Maeda, S., Kurora, R., Murai, H., Kitabatake, N., Tsuguti, H., Mukougawa, H., Iwasaki, T., Kawamura, R., Kimoto, M., Takayabu, I., Takayabu, Y. N., Tanimoto, Y., Hirooka, T., Masiunoto, Y., Watanabe, M., Tsuboki, K., and Nakamura, H., 2019, Primary factors behind the heavy rain event of July 2018 and the subsequent heat wave in Japan. SOLA 15A, 13-18, doi:10.2151/sola.15A-003.
  29. Shin, J., Olson, R., and An, S. I., 2018, Projected heat wave characteristics over the Korean Peninsula during the twenty-first century. Asia-Pacific Journal of Atmospheric Sciences, 54, 53-61, doi:10.1007/s13143-017-0059-7.
  30. Sillmann, J., Thorarinsdottir, T., Keenlyside, N., Schaller, N., Alexander, L. V., Hegerl, G., Seneviratne, S. I., Vautard, R., Zhang, X. B., and Zwiers, F. W., 2017, Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather and Climate Extremes, 18, 65-74, doi:10.1016/j.wace.2017.10.003.
  31. Wie, J., and Moon, B.-K., 2022, Two overarching teleconnection mechanisms affecting the prediction of the 2018 Korean heat waves. Journal of the Korean Earth Science Society, 43, 511-519, doi:10.5467/jkess.2022.43.4.511.
  32. Wu, B. Y., and Francis, J. A., 2019, Summer arctic cold anomaly dynamically linked to East Asian heat waves. Journal of Climate, 32, 1137-1150, doi:10.1175/Jcli-D18-0370.1.
  33. Xu, K., Lu, R. Y., Kim, B. J., Park, J. K., Mao, J. Y., Byon, J. Y., Chen, R. D., and Kim, E. B., 2019, Largescale circulation anomalies associated with extreme heat in South Korea and southern-central Japan. Journal of Climate, 32, 2747-2759, doi:10.1175/Jcli-D-18-0485.1.
  34. Yang, X. Y., Zeng, G., Zhang, S. Y., Hao, Z. X., and Iyakaremye, V., 2021, Relationship between two types of heat waves in northern East Asia and temperature anomalies in Eastern Europe. Environmental Research Letters, 16, 024048, doi:10.1088/1748-9326/abdc8a.
  35. Yeh, S. W., Won, Y. J., Hong, J. S., Lee, K. J., Kwon, M., Seo, K. H., and Ham, Y. G., 2018, The record-breaking heat wave in 2016 over South Korea and its physical mechanism. Monthly Weather Review, 146, 1463-1474, doi:10.1175/Mwr-D-17-0205.1.
  36. Yeo, S. R., Yeh, S. W., and Lee, W. S., 2019, Two types of heat wave in Korea associated with atmospheric circulation pattern. Journal of Geophysical ResearchAtmospheres, 124, 7498-7511, doi:10.1029/2018jd030170.
  37. Yoon, D., Cha, D. H., Lee, M. I., Min, K. H., Kim, J., Jun, S. Y., and Choi, Y., 2020, Recent changes in heatwave characteristics over Korea. Climate Dynamics, 55, 1685-1696, doi:10.1007/s00382-020-05420-1.
  38. Zhang, T. T., Deng, Y., Chen, J. W., Yang, S., and Dai, Y. J., 2023, An energetics tale of the 2022 mega-heatwave over central-eastern China. npj Climate and Atmospheric Science, 6, doi: 10.1038/s41612-023-00490-4.