DOI QR코드

DOI QR Code

Impact of East Asian Summer Atmospheric Warming on PM2.5 Aerosols

동아시아 지역의 여름철 온난화가 PM2.5 에어로졸에 미치는 영향

  • So-Jeong Kim (Department of Earth Science Education, Korean National University of Education) ;
  • Jae-Hee Cho (Natural Science Institute, Korean National University of Education) ;
  • Hak-Sung Kim (Department of Earth Science Education, Korean National University of Education)
  • 김소정 (한국교원대학교 지구과학교육과) ;
  • 조재희 (한국교원대학교 자연과학연구소) ;
  • 김학성 (한국교원대학교 지구과학교육과)
  • Received : 2023.12.16
  • Accepted : 2024.02.05
  • Published : 2024.02.29

Abstract

This study analyzed the effect of warming on PM2.5 aerosol production in mid-latitude East Asia during June 2020 using PM2.5 aerosol anomalies, which were identified by incorporating meteorological and climate data into the Weather Research Forecasting model coupled with Chemistry (WRF-Chem) model. The decadal temperature change trend over a 30-year period (1991-2020) in East Asia showed that recent warming has been greater in summer than in winter. Summer warming in East Asia generated low and high pressure in the lower and upper troposphere, respectively, over China. The boundary between the lower tropospheric low and upper tropospheric high pressure sloped along the terrain from the Tibetan Plateau to Korea. The eastern China, Yellow Sea, and Korean regions experienced a convergence of warm and humid southwesterly airflows originating from the East China Sea with the development of a northwesterly Pacific high pressure. In June 2020, the highest temperatures were observed since 1973 in Korea. Meanwhile, enhanced warming in East Asia increased the production of PM2.5 aerosols that travelled long distances from eastern China to Korea. PM2.5 anomalies, which were derived solely by inputting meteorological and climatic data (1991-2020) into the WRF-Chem model and excluding emission variations, showed a positive distribution extending from eastern China to South Korea across the Yellow Sea as well as over the Pacific Northwest. Thus, the contribution of warming to PM2.5 aerosols in East Asia during June 2020 was more than 50%. In particular, PM2.5 aerosols were transported from eastern China to Korea through the Yellow Sea, where the warm and humid southwesterly airflows implied wet scavenging of sulfate but promoted nitrate production.

2020년 6월 여름철 중위도 동아시아 지역의 온난화가 PM2.5 에어로졸의 생성기작에 미치는 영향을 WRF-Chem 모델에 기상과 기후 입력 자료를 적용하여 산출한 PM2.5 에어로졸 아노말리를 통해 분석하였다. 30년(1991-2020년) 동안 동아시아 지역의 10년 단위 기온 변화 경향은 최근에 겨울보다는 여름에 온난화가 더 커지는 것으로 나타나고 있다. 동아시아 지역의 여름철 온난화는 중국 내륙의 대류권 하층에서는 저기압, 대류권 상층에서는 고기압을 발생시키고 있었다. 대류권 하층 저기압과 상층 고기압의 경계가 티베트고원으로부터 한국으로 낮아지는 지형을 따라 경사져 분포하고 있었다. 중국 동부-황해-한국의 지역에는 저기압과 더불어 북서 태평양 고기압의 발달로 동중국해로부터 온난 다습한 남서 기류가 수렴하고 있었다. 한국에서는 1973년 이래로 6월 중에는 2020년에 가장 높은 기온이 관측되었다. 한편 동아시아 지역에서 강화된 온난화는 중국 동부지역으로부터 한반도로 장거리를 이동하는 PM2.5 에어로졸의 생성을 증가시키고 있었다. WRF-Chem (Weather Research Forecasting model coupled with Chemistry) 모델에 배출량의 변동은 고려하지 않고, 기상 및 기후 입력장(1991-2020년)만을 적용하여 산출한 PM2.5 아노말리는 중국 동부지역으로부터 황해와 한국, 그리고 북서 태평양 지역에 걸쳐 양(+)으로 분포하고 있었다. 따라서, 2020년 6월 동아시아 지역에서 PM2.5 질량 농도에 대한 온난화 기여도는 50% 이상이었다. 특히 PM2.5 에어로졸이 중국 동부로부터 황해를 거쳐 한국으로 장거리 수송되는 과정에서 온난 다습한 남서 기류에 의해 황산염은 습식세정 되고 있지만 질산염은 생성이 촉진되고 있었다.

Keywords

References

  1. Bae, M., Kim, B.U., Kim, H.C., and Kim, S., 2020, A multiscale tiered approach to quantify contributions: A case study of PM2.5 in South Korea during 2010-2017. Atmosphere, 11, 141, doi:10.3390/atmos11020141.
  2. Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Poschl, U., and Su, H., 2016, Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances, 2, e1601530, doi:10.1126/sciadv.1601530.
  3. Cho, J.H. and Kim, H.S., 2023, PM10 aerosol enhancement in the anticyclonic anomalies caused by the East Asian spring warming of 2021. Atmospheric Research, 281, 106496, doi:10.1016/j.atmosres.2022.106496.
  4. Cho, J.H., Kim, H.S., and Yoon, M.B., 2022, The influence of atmospheric blocking on regional PM10 aerosol transport to South Korea during February-March of 2019. Atmospheric Environment, 277, 119056, doi:10.1016/j.atmosenv.2022.119056.
  5. Choi, G. and Lee, D.E., 2020, Changing human-sensible temperature in Korea under a warmer monsoon climate over the last 100 years. International Journal of Biometeorology, 64, 729-738, doi:10.1007/s00484-020-01862-8.
  6. Choi, N. and Lee, S.J., 2023, Comparison of the opposite behaviours of Korean heatwaves with extreme hot sea surface temperatures in August 2016 and 2022. International Journal of Climatology, 43, 6993-7002, doi:10.1002/joc.8247.
  7. Cohen, J., Screen, J.A., Furtado, J.C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., and Jones, J., 2014, Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627-637, doi:10.1038/NGEO2234.
  8. Coumou, D., Di Capua, G., Vavrus, S., Wang, L., and Wang, S., 2018, The influence of Arctic amplification on mid-latitude summer circulation. Nature Communications, 9, 2959, doi:10.1038/s41467-018-05256-8.
  9. Deng, K., Yang, S., Ting, M., Zhao, P., and Wang, Z., 2019, Dominant modes of China summer heat waves driven by global sea surface temperature and atmospheric internal variability. Journal of Climate, 32, 3761-3775, doi:10.1175/JCLI-D-18-0256.1.
  10. Du, H., Kong, L., Cheng, T., Chen, J., Yang, X., Zhang, R., Han, Z., Yan, Z., and Ma, Y., 2010, Insights into ammonium particle-to-gas conversion: Non-sulfate ammonium coupling with nitrate and chloride. Aerosol and Air Qualiyt Research, 10, 589-595, doi:10.4209/aaqr.2010.04.0034.
  11. Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmye, C., Baughcum, S.L., and Kloster, S., 2010, Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3, 43-67, doi:10.5194/gmd-3-43-2010.
  12. Freychet, N., Tett, S., Wang, J., and Hegerl, G., 2017, Summer heat waves over Eastern China: dynamical processesand trend attribution. Environmental Research Letters, 12, 024015, doi:10.1088/1748-9326/aa5ba3.
  13. Grell, G.A. and Devenyi, D., 2002, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29, 1693, doi:10.1029/2002GL015311.
  14. Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., and Wang, X., 2012, The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471-1492, doi:10.5194/gmd-5-1471-2012.
  15. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., H'olm, E., Janiskov'a, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.N., 2020, The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049, doi:10.1002/qj.3803.
  16. Hong, S., Noh, Y., and Dudhia, J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134, 2318-2341, doi:10.1175/MWR3199.1.
  17. Jang, A.S., 2014, Impact of particulate matter on health. Journal of the Korean Medical Association, 57, 763-768, doi:10.5124/jkma.2014.57.9.763. (in Korean)
  18. Jiang, X., Wiedinmyer, C., and Carlton, A.G., 2012, Aerosols from fires: An examination of the effects on ozone photochemistry in the Western United States. Environmental Science & Technology, 46, 442-460, doi:10.1021/es301541k.
  19. Kim, H.S., Kim, J.M., and Sohn, J.J., 2012, An Analysis of MODIS aerosol optical properties and ground-based mass concentrations in central Korea in 2009. Journal of the Korean earth science society, 33, 269-279, doi:10.5467/JKESS.2012.33.3.269. (in Korean)
  20. Kim, J.A., Lim, S., Shang, X., Lee, M., Kang, K.S., and Ghim, Y.S., 2020, Characteristics of PM2.5 chemical composition and high-concentration episodes observed in Jeju from 2013 to 2016. Journal of Korean Society for Atmospheric Environment, 36, 388-403, doi:10.5572/KOSAE.2020.36.3.388. (in Korean)
  21. Knote, C., Hodzic, A., Jimenez, J.L., Volkamer, R., Orlando, J.J., Baidar, S., Brioude, J., Fast, J., Gentner, D.R., Goldstein, A.H., Hayes, P.L., Knighton, W.B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q., 2014, Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model. Atmospheric Chemistry and Physics, 14, 6213-6239, doi:10.5194/acp-14-6213-2014.
  22. Korea Meteorological Administration (KMA), 2020, Korean climate change assessment report 2020. Korea Meteorological Administration, 978-89-954715-7-9, 334 p. (in Korean)
  23. Koo, B., Wilson, G.M., Morris, R.E., Dunker, A.M., and Yarwood, G., 2009, Comparison of source apportionment and sensitivity analysis in a particulate matter air quality model. Environmental Science & Technology, 43, 6669-6675, doi:10.1021/es9008129.
  24. Iacono, M. J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., and Collins, W.D., 2008, Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres. 113, D13103, doi:10.1029/2008JD009944.
  25. Jones, A.C., Hill, A., Remy, S., Abraham, N.L., Dalvi, M., Hardacre, C., Hewitt, A.J., Johnson, B., Mulcahy, J.P., and Turnock, S.T., 2021, Exploring the sensitivity of atmospheric nitrate concentrations to nitric acid uptake rate using the Met Office's Unified Model. Atmospheric Chemistry and Physics, 21, 15901-15927, doi:10.5194/acp-21-15901-2021.
  26. Lee, H.J. and Cho, J.H., 2022, Analysis of the Long-Range Transport Contribution to PM10 in Korea Based on the Variations of Anthropogenic Emissions in East Asia using WRF-Chem. The Journal of The Korean Earth Science Society, 43, 283-302, doi:10.5467/JKESS.2022.43.2.283. (in Korean)
  27. Lee, J.H., Cho, J.H., and Kim H.S., 2022, Analysis of the contribution of biomass burning emissions in East Asia to the PM10 and radiation energy budget in Korea. The Journal of The Korean Earth Science Society, 43, 265-282, doi:10.5467/JKESS.2022.43.2.265. (in Korean)
  28. Lee, S.J., Hyun, Y.K., Lee, S.M., Hwang, S.O., Lee, J., and Boo, K.O., 2020, Prediction skill for East Asian summer monsoon indices in a KMA Global Seasonal Forecasting System (GloSea5). Atmosphere, 30, 293-309, doi:10.14191/ATMOS.2020.30.3.293. (in Korean)
  29. Lee, W.S. and Lee, M.I., 2016, Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. International Journal of Climatology, 36, 4815-4830, doi: 10.1002/joc.4671.
  30. Min, S.K., Son, S.W., Seo, K.H., Kug, J.S., An, S.I., Choi, Y.S., Jeong, J.H., Kim, B.M., Kim, J.W., Kim, Y.H., Lee, J.Y., and Lee, M.I., 2015, Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pacific Journal of Atmospheric Sciences, 51, 103-121, doi:10.1007/s13143-015-0066-5.
  31. Moon, J.Y., Choi, Y., Kim, Y., and Min, S., 2022, Subseasonal to annual long-term trends in climate extremes over East Asia, 1981-2021. Frontiers in Earth Science, 10, 880462, doi:10.3389/feart.2022.880462.
  32. Morrison, H., Curry, J.A., and Khvorostyanov, V.I., 2005, A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. Journal of the Atmospheric Sciences, 62, 1665-1677, doi:10.1175/JAS3446.1.
  33. Nakamura, T. and Sato, T., 2022, A possible linkage of Eurasian heat wave and East Asian heavy rainfall in Relation to the Rapid Arctic warming. Environmental Research, 209, 112881, doi:10.1016/j.envres.2022.112881.
  34. Oreggioni, G.D., Ferraio, F.M., Crippa, M., Muntean, M., Schaaf, E., Guizzardi, D., Solazzo, E., Duerr, M., Perry, M., and Vignati, E., 2021, Climate change in a changing world: Socio-economic and technological transitions, regulatory frameworks and trends on global greenhouse gas emissions from EDGAR v.5.0. Global Environmental Change, 70, 102350, doi:10.1016/j.gloenvcha.2021.102350.
  35. Robarge, W.P., Walker, J.T., McCulloch, R.B., and Murray, G., 2002, Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United Sates. Atmospheric Environment, 36, 1661-1674, doi:10.1016/S1352-2310(02)00171-1.
  36. Seo, J., Won, J., Choi, J., Lee, O., and Kim, S., 2021, Non-stationary frequency analysis and uncertainty of heat wave events. Journal of the Korean Society of Hazard Mitigation, 21, 301-310, doi:10.9798/KOSHAM. 2021.21.1.301. (in Korean)
  37. Son, S.C., Park, T.E., and Park, S., 2021, Characterization of fine particulate matter during summer at an urban site in Gwangju using chemical, optical, and spectroscopic methods. Particle and Aerosol Research, 17, 91-106, doi:10.11629/jpaar.2021.17.4.091 (in Korean)
  38. Wang, J. and Yan, Z., 2021, Rapid rises in the magnitude and risk of extreme regional heat wave events in China. Weather and Climate Extremes, 34, 100379, doi:10.1016/j.wace.2021.100379.
  39. Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J., and Soja, A.J., 2011, The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4, 625-641, doi:10.5194/gmd-4-625-2011.
  40. Wei, Y., Yu, H., Huang, J., Liu, X., and Zhou, J., 2021, Improving China's summer precipitation prediction in 2020 by observational constrained bias correction. Theoretical and Applied Climatology, 145, 1317-1331, doi:10.1007/s00704-021-03693-y.
  41. Ye, D.X., Yin, J.F., Chen, Z.H., Zheng, Y.F., and Wu, R.J., 2014, Spatial and temporal variations of heat waves in China from 1961 to 2010. Advances in Climate Change Research 5, 66-73, doi:10.3724/SP.J.1248.2014.066.
  42. Ye, L., Shi, K., Xin, Z., Wang, C., and Zhang, C., 2019, Compound droughts and heat waves in China. Sustainability, 11, 3270, doi:10.3390/su11123270.
  43. You, Q., Jiang, Z., Yue, X., Guo, W., Liu, Y., Cao, J., Li, W., Wu, F., Cai, Z., Zhu, H., Li, T., Liu, Z., He, J., Chen, D., Pepin, N., and Zhai, P., 2022, Recent frontiers of climate changes in East Asia at global warming of 1.5℃ and 2℃. Nature Portfolio Journal: Climate and Atmospheric Science, 5, 80, doi:10.1038/s41612-022-00303-0.
  44. Yu, G.H., Park, S.S., Park, J.S., Park, S.M., Song, I.H., Oh, J., Shin, H.J., Lee, M.D., Lim, H.B., Kim, H.W., and Choi, J.Y., 2018, Pollution characteristics of PM2.5 observed during winter and summer in Baengryeongdo and Seoul. Journal of Korean Society for Atmospheric Environment, 34, 38-55, doi:10.5572/KOSAE.2018.34.1.038. (in Korean)
  45. Yu, G.H., Zhang, Y., Cho, S.Y., and Park, S., 2017, Influence of haze pollution on water-soluble chemical species in PM2.5 and size-resolved particles at an urban site during fall. Journal of Environmental Sciences, 57, 370-382. https://doi.org/10.1016/j.jes.2016.10.018
  46. Zhang, R., Wang, G., Guo, S., Zamora, M., Ying, Q., Lin, Y., Wang, W., Hu, M., and Wang, Y., 2015, Formation of urban fine particulate matter. Chemical Reviews, 115, 3803-3855, doi:10.1021/acs.chemrev.5b00067.