Acknowledgement
본 연구는 중소기업벤처부의 지역특화산업육성+(R&D) S3270844 및 한국연구재단 기본연구 (2022R1F1A1074660) 의 지원에 의해 수행되었다.
References
- R. Tejero, E. Anitua, G. Orive, Toward the biomimetic implant surface: Biopolymers on titanium-based implants for bone regeneration, Progress Polymer Science, 39, 1406 (2014). Doi: https://doi.org/10.1016/j.progpolymsci.2014.01.001
- X. Xie, C. Mao, X. Liu, Y. Zhang, Z. Cui, X. Yang, K. W. K. Yeung, H. Pan, P. K. Chu, S. Wu, Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/ag/collagen coating, ACS Applied Materials & Interfaces, 9, 26417 (2017). Doi: https://doi.org/10.1021/acsami.7b06702
- L. Tan, J. Li, X. M. Liu, D. Cui, X. J. Yang, S. L. Zhu, Z. Y. Li, X. B. Yuan, Y. F. Zheng, K. W. K. Yeung, H. Pan, X. B. Wang, S. L. Wu, Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light, Advanced Materials, 30, 1801808 (2018). Doi: https://doi.org/10.1002/adma.201801808
- L. Zhang, C. Y. Ning, T. Zhou, X. M. Liu, K. W. K. Yeung, T. J. Zhang, Z. S. Xu, X. B. Wang, S. L. Wu, P. K. Chu, Polymeric nanoarchitectures on Ti-based implants for antibacterial applications, ACS Applied Materials & Interfaces, 6, 17323 (2014). Doi: https://doi.org/10.1021/am5045604
- D. L. Yang, B. Du, Y. X. Yan, H. Q. Li, D. Zhang, T. X. Fan, Rice-Husk-templated hierarchical porous TiO2/SiO2 for enhanced bacterial removal, ACS Applied Materials & Interfaces, 6, 2377, (2014). Doi: https://doi.org/10.1021/am500206g
- T. Diu, N. Faruqui, T. Sjostrom, B. Lamarre, H. F. Jenkinson, B. Su, M. G. Ryadnov, Cicada-inspired cellinstructive nanopatterned arrays, Scientific Reports, 4, 7122 (2014). Doi: https://doi.org/10.1038/srep07122
- L. Zhao, Y. Hu, D. W. Xu, K.Y. Cai, Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion, Colloids and Surfaces B: Biointerfaces, 119, 155 (2014). Doi: https://doi.org/10.1016/j.colsurfb.2014.05.002
- H. Qin, H. Cao, Y. C. Zhao, C. Zhu, T. Cheng, Q. J. Wang, X. C. Peng, M. Q. Cheng, J. X. Wang, G. D. Jin, Y. Jiang, X. L. Zhang, X. Y. Liu, P. K. Paul, Invitro and invivo anti-biofilm effects of silver nanoparticles immobilized on titanium, Biomaterials, 35, 9114 (2014). Doi: https://doi.org/10.1016/j.biomaterials.2014.07.040
- Z. Yuan, P. Liu, Y. S. Hao, Y. Ding, K. Y. Cai, In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium, Colloids and Surfaces B: Biointerfaces, 171, 597, (2018). Doi: https://doi.org/10.1016/j.colsurfb.2018.07.064
- M. K. Narbat, B. F. L. Lai, C. F. Ding, J. N. Kizhakkedathu, R. E. W. Hancock, R. Z. Wang, Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections, Biomaterials, 34, 5969 (2013). Doi: https://doi.org/10.1016/j.biomaterials.2013.04.036
- L. G. Harris, S. Tosatti,, M. Wieland, M. Texto and R. G. Richards, Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers, Biomaterials, 25, 413 (2004). Doi: https://doi.org/10.1016/j.biomaterials.2003.11.033
- K. G. Neoh, X. F. Hu, D. Zheng and E. T. Kang, Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces, Biomaterials, 33, 2813 (2012). Doi: https://doi.org/10.1016/j.biomaterials.2012.01.018
- M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, The chemistry of two dimensional layered transition metal dichalcogenide nanosheets, Nature Chemistry, 5, 263 (2013). Doi: https://doi.org/10.1038/Nchem.1589
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, 2D transition metal dichalcogenides, Nature Reviews Materials, 2, 17033 (2017). Doi: https://doi.org/10.1038/natrevmats.2017.33
- R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Z. Wang, A. I. Minett, V. Nicolosi, J. N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions, Advanced Materials, 23, 3944 (2011). Doi: https://doi.org/10.1002/adma.201102584
- C. Zhang, D. F. Hu, J. W. Xu, M. Q. Ma, H. B. Xing, K. Yao, J. Ji, Z. K. Xu, Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity, ACS Nano, 12, 12347 (2018). Doi: https://doi.org/10.1021/acsnano.8b06321
- V. Agarwal, K. Chatterjee, Recent advances in the field of transition metal dichalcogenides for biomedical applications, Nanoscale, 10, 16365 (2018). Doi: https://doi.org/10.1039/c8nr04284e
- L. Liu, Z. Q. Liu, P. Huang, Z. Wu, S. Y. Jiang, Protein-induced ultrathin molybdenum disulfide (MoS2) flakes for a water-based lubricating system, RSC Advances, 6, 113315 (2016). Doi: https://doi.org/10.1039/c6ra23786j
- G. S. Bang, S. Cho, N. Son, G. W. Shim, B. K. Cho, S. Y. Choi, DNA-assisted exfoliation of tungsten dichalcogenides and their antibacterial effect, ACS Applied Materials & Interfaces, 8, 1943 (2016). Doi: https://doi.org/10.1021/acsami.5b10136
- D. Yim, J. E. Kim, H. I. Kim, J. K. Yang, T. W. Kang, J. Nam, S. H. Han, B. Jun, C. H. Lee, S. U. Lee, J. W. Kim, J. H. Kim, Adjustable intermolecular interactions allowing 2D transition metal dichalcogenides with prolonged scavenging activity for reactive oxygen species, Small, 14, 1800026 (2018). Doi: https://doi.org/10.1002/smll.201800026
- M. H. Shin, S. M. Baek, A. V. Polyakov, I. P. Semenova, R. Z. Valiev W. Hwang, S. K. Hahn and H. S. Kim, Molybdenum disulfide surface modification of ultrafine-grained titanium for enhanced cellular growth and antibacterial effect, Scientific reports, 8, 9907 (2018) Doi: https://doi.org/10.1038/s41598-018-28367-0
- Z. Yuan, B. Tao, Y. He, J. Liu, C. Lin, X. Shen, Y. Ding, Y. Yu, C. Mu, P. Liu, K. Cai, Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation, Biomaterials, 217, 119290 (2019). Doi: https://doi.org/10.1016/j.biomaterials.2019.119290
- Y. So, D. Yim, W. Son, H. Lee, S. Lee, C. Choi, C. S. Yang, J. Kim, Deciphering the therapeutic mechanism of topical WS2 nanosheets for the effective therapy of burn injuries, Applied Materials Today, 29, 101591 (2022). Doi: https://doi.org/10.1016/j.apmt.2022.101591
- X. Gan, L. Y. S. Lee, K. Wong, T. W. Lo, K. H. Ho, D. Y. Lei, and H. Zhao, 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of s vacancies, ACS Applied Energy Materials, 1, 4754 (2018). Doi: https://doi.org/10.1021/acsaem.8b00875
- S. Xiao, P. Xiao1, X. Zhang, D. Yan, X. Gu1, F. Qin, Z. Ni, Z. J. Han and K. Ostrikov, Atomic-layer soft plasma etching of MoS2, Scientific Reports, 6, 19945 (2016). Doi: https://doi.org/10.1038/srep19945
- J. Lee, M. J. Kim, B. G. Jeong, C. Kwon, Y. Cha, S. H. Choi, K. K. Kim, M. S. Jeong, Electrical role of sulfur vacancies in MoS2: Transient current approach, Applied Surface Science, 613, 155900 (2023). Doi: https://doi.org/10.1016/j.apsusc.2022.155900
- J. Quinn, R. McFadden, C. Chan, L. Carson, Titanium for Orthopedic Applications: An overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation, iScience, 23, 101745 (2020). Doi: https://doi.org/10.1016/j.isci.2020.101745
- D. Gupta, V. Chauhan, R. Kumar, A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments, Inorganic Chemistry Communications, 121, 108200 (2020). Doi: https://doi.org/10.1016/j.inoche.2020.108200
- Z. He, W. Que, Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction, Applied Materials Today, 3, 23 (2016). Doi: https://doi.org/10.1016/j.apmt.2016.02.001
- X. Li, H. Zhu, Two-dimensional MoS2: Properties, preparation, and applications, Journal of Materiomics, 1, 33 (2015). Doi: https://doi.org/10.1016/j.jmat.2015.03.003
- D. Prando, A. Brenna, M. V. Diamanti, S. Beretta, F. Bolzoni, M. Ormellese, and M. Pedeferri, Corrosion of Titanium: Part 1: Aggressive environments and main forms of degradation, Journal of Applied Biomaterials & Functional Materials, 15, 291 (2017). Doi: https://doi.org/10.5301/jabfm.5000387
- S. K. Park, H. C. Choe, Effects of ta-C coatings on surface characteristics of dental Ni-Ti files, Corrosion Science and Technology, 22, 368 (2023). Doi: http://doi.org/10.14773/cst.2023.22.5.368
- J. E. Go, J. K. Lee, H. C. Choe, Effects of wollastonite coating on surface characteristics of plasma electrolytic oxidized Ti-6Al-4V alloy, Corrosion Science and Technology, 22, 257 (2023). Doi: https://doi.org/10.14773/cst.2023.22.4.257
- Q. Li, B. Hu, Q. Yang, X. Cai, M. Nie, Y. Jin, L. Zhou, Y. Xu, Q. Pan, L. Fang, Interaction mechanism between multi-layered MoS2 and H2O2 for self-generation of reactive oxygen species, Environmentals Research, 191, 110227 (2020). Doi: https://doi.org/10.1016/j.envres.2020.110227
- Y. S. Kim, Synergistic effect of nitrogen and molybdenum on localized corrosion of stainless steels, Corrosion Science and Technology, 9, 20 (2010). Doi: https://doi.org/10.14773/cst.2010.9.1.020