Acknowledgement
The authors would like to thank sincerely Professor Pengtao Li for his precious suggestions on this topic.
References
- W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213-242. https://doi.org/10.2307/2946638
- H.-Q. Bui and T. Candy, A characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces using Poisson like kernels, in Functional analysis, harmonic analysis, and image processing: a collection of papers in honor of Bjorn Jawerth, 109-141, Contemp. Math., 693, Amer. Math. Soc., Providence, RI, 2017. https://doi.org/10.1090/conm/693
- L. Caffarelli, S. Salsa, and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425-461. https://doi.org/10.1007/s00222-007-0086-6
- L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. https://doi.org/10.1080/03605300600987306
- L. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincar'e C Anal. Non Lin'eaire 33 (2016), no. 3, 767-807. https://doi.org/10.1016/j.anihpc.2015.01.004
- L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010), no. 3, 1903-1930. https://doi.org/10.4007/annals.2010.171.1903
- G. Dafni and J. Xiao, Some new tent spaces and duality theorems for fractional Carleson measures and Qα(ℝn), J. Funct. Anal. 208 (2004), no. 2, 377-422. https://doi.org/10.1016/S0022-1236(03)00181-2
- E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
- J. Escobar, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37 (1988), no. 3, 687-698. https://doi.org/10.1512/iumj.1988.37.37033
- R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), no. 12, 3407-3430. https://doi.org/10.1016/j.jfa.2008.05.015
- J. Haddad, C. H. Jim'enez, and M. Montenegro, Sharp affine weighted Lp Sobolev type inequalities, Trans. Amer. Math. Soc. 372 (2019), no. 4, 2753-2776. https://doi.org/10.1090/tran/7728
- H. Hajaiej, X. Yu, and Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, J. Math. Anal. Appl. 396 (2012), no. 2, 569-577. https://doi.org/10.1016/j.jmaa.2012.06.054
- P. Li, R. Hu, and Z. Zhai, Fractional Besov trace/extension-type inequalities via the Caffarelli-Silvestre extension, J. Geom. Anal. 32 (2022), no. 9, Paper No. 236, 30 pp. https://doi.org/10.1007/s12220-022-00975-3
- J. Merker, Generalizations of logarithmic Sobolev inequalities, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 2, 329-338. https://doi.org/10.3934/dcdss.2008.1.329
- V. H. Nguyen, Some trace Hardy type inequalities and trace Hardy-Sobolev-Maz'ya type inequalities, J. Funct. Anal. 270 (2016), no. 11, 4117-4151. https://doi.org/10.1016/j.jfa.2016.03.012
- J. Xiao, A sharp Sobolev trace inequality for the fractional-order derivatives, Bull. Sci. Math. 130 (2006), no. 1, 87-96. https://doi.org/10.1016/j.bulsci.2005.07.002
- J. Xiao and Z. Zhai, Fractional Sobolev, Moser-Trudinger Morrey-Sobolev inequalities under Lorentz norms, J. Math. Sci. (N.Y.) 166 (2010), no. 3, 357-376. https://doi.org/10.1007/s10958-010-9872-6