DOI QR코드

DOI QR Code

A NOTE ON SOBOLEV TYPE TRACE INEQUALITIES FOR s-HARMONIC EXTENSIONS

  • Yongrui Tang (School of Mathematics and Statistics Qingdao University) ;
  • Shujuan Zhou (School of Mathematics and Statistics Qingdao University)
  • Received : 2023.05.15
  • Accepted : 2023.11.20
  • Published : 2024.03.01

Abstract

In this paper, apply the regularities of the fractional Poisson kernels, we establish the Sobolev type trace inequalities of homogeneous Besov spaces, which are invariant under the conformal transforms. Also, by the aid of the Carleson measure characterizations of Q type spaces, the local version of Sobolev trace inequalities are obtained.

Keywords

Acknowledgement

The authors would like to thank sincerely Professor Pengtao Li for his precious suggestions on this topic.

References

  1. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213-242. https://doi.org/10.2307/2946638
  2. H.-Q. Bui and T. Candy, A characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces using Poisson like kernels, in Functional analysis, harmonic analysis, and image processing: a collection of papers in honor of Bjorn Jawerth, 109-141, Contemp. Math., 693, Amer. Math. Soc., Providence, RI, 2017. https://doi.org/10.1090/conm/693
  3. L. Caffarelli, S. Salsa, and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425-461. https://doi.org/10.1007/s00222-007-0086-6
  4. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. https://doi.org/10.1080/03605300600987306
  5. L. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincar'e C Anal. Non Lin'eaire 33 (2016), no. 3, 767-807. https://doi.org/10.1016/j.anihpc.2015.01.004
  6. L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010), no. 3, 1903-1930. https://doi.org/10.4007/annals.2010.171.1903
  7. G. Dafni and J. Xiao, Some new tent spaces and duality theorems for fractional Carleson measures and Qα(ℝn), J. Funct. Anal. 208 (2004), no. 2, 377-422. https://doi.org/10.1016/S0022-1236(03)00181-2
  8. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
  9. J. Escobar, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37 (1988), no. 3, 687-698. https://doi.org/10.1512/iumj.1988.37.37033
  10. R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), no. 12, 3407-3430. https://doi.org/10.1016/j.jfa.2008.05.015
  11. J. Haddad, C. H. Jim'enez, and M. Montenegro, Sharp affine weighted Lp Sobolev type inequalities, Trans. Amer. Math. Soc. 372 (2019), no. 4, 2753-2776. https://doi.org/10.1090/tran/7728
  12. H. Hajaiej, X. Yu, and Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, J. Math. Anal. Appl. 396 (2012), no. 2, 569-577. https://doi.org/10.1016/j.jmaa.2012.06.054
  13. P. Li, R. Hu, and Z. Zhai, Fractional Besov trace/extension-type inequalities via the Caffarelli-Silvestre extension, J. Geom. Anal. 32 (2022), no. 9, Paper No. 236, 30 pp. https://doi.org/10.1007/s12220-022-00975-3
  14. J. Merker, Generalizations of logarithmic Sobolev inequalities, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 2, 329-338. https://doi.org/10.3934/dcdss.2008.1.329
  15. V. H. Nguyen, Some trace Hardy type inequalities and trace Hardy-Sobolev-Maz'ya type inequalities, J. Funct. Anal. 270 (2016), no. 11, 4117-4151. https://doi.org/10.1016/j.jfa.2016.03.012
  16. J. Xiao, A sharp Sobolev trace inequality for the fractional-order derivatives, Bull. Sci. Math. 130 (2006), no. 1, 87-96. https://doi.org/10.1016/j.bulsci.2005.07.002
  17. J. Xiao and Z. Zhai, Fractional Sobolev, Moser-Trudinger Morrey-Sobolev inequalities under Lorentz norms, J. Math. Sci. (N.Y.) 166 (2010), no. 3, 357-376. https://doi.org/10.1007/s10958-010-9872-6