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ON THE LINEAR INDEPENDENCE MEASURES OF

LOGARITHMS OF RATIONAL NUMBERS. II
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Abstract. In this paper, we give a general method to compute the linear

independence measure of 1, log(1− 1/r), log(1 + 1/s) for infinitely many
integers r and s. We also give improvements for the special cases when

r = s, for example, ν(1, log 3/4, log 5/4) ≤ 9.197.

1. Introduction

For an irrational real number α, the real number µ > 0 is said to be an
irrationality measure of α if, for any ε > 0, there exists q0 = q0(ε) > 0, such
that ∣∣∣∣α− p

q

∣∣∣∣ ≥ q−µ−ε

for all integers p and q with q ≥ q0. If q0(ε) is effectively computable, we say
that it is an effective irrationality measure of α.

If α0, α1, . . . , αn are real numbers linearly independent over Q, we say that
ν > 0 is a linearly independence measure of α0, α1, . . . , αn if, for any ε > 0,
there exists H0(ε) > 0, such that

|pα0 + q1α1 + · · ·+ qnαn| ≥ H−ν−ε

for all integers p, q1, . . . , qn, with H = max (|q1|, |q2|, . . . , |qn|) ≥ H0(ε).
The minimum of those numbers µ is denoted by µ(α), the minimum of those

ν is denoted by ν(α0, α1, . . . , αn). We have µ(α) = ν(1, α) + 1.
A classical problem is to study the irrationality measure of logarithm of

rational number and the linear independence measure of logarithms of rational
numbers. Baker [4] gave effective lower bounds of nonvanishing linear forms of
logarithms

β0 + β1 logα1 + · · ·+ βn logαn,
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where αi and βi are algebraic numbers. In the particular case, where αi are
rationals and βi are integers, we obtain linear independence measures of loga-
rithms of rational numbers (see [5] or [19]). However, the linear independence
(or irrationality) measures are very large, for example, we have µ(log 2) ≤ 1022.
In 1964, Baker [3] gave the first effective irrationality measure of log 2 which
is 12.5. After that, many improvements appeared as follows: in 1979, van
der Poorten [11] showed that the measure of log 2 can be reduced to 4.622, in
1982, Chudnovskys [7] improved it to 4.269, in 1987, Rhin [13] established that
µ(log 2) ≤ 4.0765, in 1993, Amoroso [2] obtained µ(log 2) ≤ 3.991, in 1987,
Rukhadze [16] found that µ(log 2) ≤ 3.891399. At present, the best known
irrationality measure of log 2 is 3.57455391 which is obtained by Marcovecchio
[10] in 2009.

In 1987, with an “arithmetical method”, Rhin [13] obtained µ(log 3) ≤ 8.616
with the help of ν(1, log 3/2, log 4/3) ≤ 7.616, i.e., ν(1, log 2, log 3) ≤ 7.616.
In 2007, Salikhov [17] improved it to 5.125 with an “analytical method” by
considering two integrals of symmetric rational function. In 2014, the fourth
author and Wang [21] improved it to 5.1163 with the “arithmetical method”
applied to the Salikhov’s integrals.

In 2003, the fourth author [20] obtained ν (1, log 16/15, log 6/5, log 4/3) ≤
15.27049 and ν (1, log 36/35, log 8/7, log 6/5, log 9/7) ≤ 256.865, that is to say
ν(1, log 2, log 3, log 5) ≤ 15.27049 and ν(1, log 2, log 3, log 5, log 7) ≤ 256.865,
and then µ(log 5) ≤ 16.27049 and µ(log 7) ≤ 257.865. In 2020, Bondareva et al.
[6] improved the irrationality measure of log 7 to 36.0099 with the “arithmetical
method” using the integrals of symmetric rational function.

In 1980, Alladi and Robinson [1] gave a general method to compute the
irrational measure of log(r/s), where r/s is a rational number close to 1. In
1989, Rhin [14] proved that µ(log 5/3) ≤ 7.224. In 1993, Amoroso [2] im-
proved the measure to µ(log 5/3) ≤ 6.851 and obtained the following results
µ(log 2/3) ≤ 3.402, µ(log 3/4) ≤ 3.154, µ(log 4/5) ≤ 3.017 and µ(log 7/5) ≤
5.456. In 2010, Salnikova [18] improved the irrationality measure of log 5/3 to
5.6514 and obtained µ(log 8/5) ≤ 7.2173.

The fourth author [20] gave a general method to compute the linear inde-
pendence measure of 1, log(1 − 1/a), log(1 + 1/a) for all integers a ≥ 4. This
method replaced the measure (ν(1, log 3/4, log 5/4) ≤ 88) of Rhin and Toffin
[15] by 36.86, and then improved it to 20.515 with the “arithmetical method”.

In this paper, we focus on the linear independence measure of logarithms
of rational numbers. We give a general method to compute the linear inde-
pendence measure of 1, log(1− 1/r), log(1 + 1/s) for infinitely many integers r
and s. In particular, we obtain the linear independence measure of 1, log(1 −
1/a), log(1+1/a) for all integers a ≥ 2 and, for example, ν(1, log 3/4, log 5/4) ≤
10.789, which is better than the bound (20.515) in [20]. And we give some im-
provements in the special case, for example, ν(1, log 3/4, log 5/4) ≤ 9.197.

In Section 2, we will give some lemmas. In Section 3, we will give the The-
orems that provide the methods to computer the linear independence measure
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of 1, log(1 − 1/r), log(1 + 1/s) for r = a, s = ma or r = m′a, s = ma, where
a,m,m′ are integers and prove them. In Section 4, we will show some numerical
results and some improvements in the special case.

2. Some lemmas

We first recall Lemma 1 in [20], which is a generalization of Hata’s lemma
[9].

Lemma 2.1. Let m ∈ Z+, and θ1, θ2, . . . , θm be m real numbers. Suppose

that for any n ≥ 1, there exist integers rn > 0, P
(1)
n , . . . , P

(m)
n , such that if

ε
(i)
n = rnθi − P

(i)
n , then ε

(i)
n ̸= 0 for 1 ≤ i ≤ m and

lim
n→∞

1

n
log |rn| ≤ σ, lim

n→∞

1

n
log |ε(i)n | = −τ (i), 1 ≤ i ≤ m,

where σ, τ (i)(1 ≤ i ≤ m) are positive numbers.
Let τ = min

1≤i≤m
(τ (i)), if for any i ̸= j, τ (i) ̸= τ (j), then 1, θ1, θ2, . . . , θm are

linearly independent over Q, and for any ε > 0, there exists a positive integer
H0(ε) such that

|p+ q1θ1 + q1θ2 + · · ·+ qmθm| ≥ H−σ
τ −ε

for all integers p, qi(1 ≤ i ≤ m) with H = max
1≤i≤m

(|qi|) ≥ H0(ε).

Let r and s be two positive integers with s ≥ r. Let B = (2r − 1)(2s + 1),
C1 = 2(s + 1)(2r − 1), C2 = 2r(2s + 1) with C2 > C1 because s ≥ r. Let
H0(x) = 2B−x, H1(x) = x−(2B−C2), H2(x) = x−(2B−C1), H3(x) = x−B,
H4(x) = x− C1, H5(x) = x− C2, and

F (x) =
Hα1n

1 (x)Hα2n
2 (x)Hα3n

3 (x)Hα2n
4 (x)Hα1n

5 (x)

xn+1H0(x)n+1
=

(f(x))n

xH0(x)
,

where αi are the rational numbers and n is an even integer large enough such
that αin ∈ Z for i = 1, 2, 3. Let ξ1, ξ2 ∈ (B,C2), ξ3 /∈ (B,C2) be the extremum
points of f(x) with |f(ξ2)| ≥ |f(ξ1)|.

As the function F (x) is invariant by the transformation x → 2B − x, i.e.,
F (x) = F (2(2r − 1)(2s+ 1)− x), we can write

(1) F (x) = P (x) +

n+1∑
l=1

(
Al

xl
+

Al

H0(x)l

)
,

where P (x) ∈ Z[x]. If we take α1 = α2 = 1/2, α3 = 1, then

degP (x) = (2α1 + 2α2 + α3)n− 2n− 2 = n− 2.

For Al defined in (1), we have the following result.
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Lemma 2.2. Let d1 = gcd(r, s + 1), d2 = gcd(r − 1, s), d3 = gcd(r, s), d4 =
gcd(s+ 1, r − 1). Then Al can be written as

Al = 2l−2dl−1
1 dl−1

2 dl−1
3 dl−1

4

(
r

d1d3

)−n
2 +l−1( s+1

d1d4

)−n
2 +l−1( r−1

d2d4

)−n
2 +l−1

×
(

s
d2d3

)−n
2 +l−1

(2r − 1)l−2(2s+ 1)l−2Bl,

where Bl ∈ Z for l = 1, 2, . . . , n+ 1.

Proof. We denote Dk(f(x)) =
f(k)(0)

k! for k ≥ 0, then

Al = Dn+1−l(F (x)xn+1)

=
∑

∑
0≤i≤5 ki=n+1−l

Dk0

(
H0(x)

−n−1
)
Dk1

(
H1(x)

n
2

)
Dk2

(
H2(x)

n
2

)
×Dk3

(H3(x)
n)Dk4

(
H4(x)

n
2

)
Dk5

(
H5(x)

n
2

)
=
∑
k

γk(2(2r−1)(2s+1))−n−1−k0(2(r−1)(2s+1))
n
2 −k1(2s(2r−1))

n
2 −k2

× ((2r−1)(2s+1))n−k3(2(s+ 1)(2r − 1))
n
2 −k4(2r(2s+ 1))

n
2 −k5

=
∑
k

γk2
n−1−k0−k1−k2−k4−k5r

n
2 −k5(s+ 1)

n
2 −k4(r − 1)

n
2 −k1s

n
2 −k2

× (2r − 1)n−1−k0−k2−k3−k4(2s+ 1)n−1−k0−k1−k3−k5

=
∑
k

γk2
n−1−k0−k1−k2−k4−k5dn−k4−k5

1 dn−k1−k2
2 dn−k2−k5

3 dn−k1−k4
4

×
(

r
d1d3

)n
2 −k5

(
s+1
d1d4

)n
2 −k4

(
r−1
d2d4

)n
2 −k1

(
s

d2d3

)n
2 −k2

× (2r − 1)n−1−k0−k2−k3−k4(2s+ 1)n−1−k0−k1−k3−k5 ,

where 0 ≤ ki ≤ n/2 for i = 1, 2, 4, 5 and 0 ≤ k3 ≤ n, 0 ≤ k0 ≤ n + 1, the
summation is over the sextuple k = (k0, k1, k2, k3, k4, k5) such that

∑
0≤i≤5 ki =

n+ 1− l and γk ∈ Z.
As k0 + k1 + k2 + k3 + k4 + k5 = n+ 1− l, then

Al = 2l−2dl−1
1 dl−1

2 dl−1
3 dl−1

4

(
r

d1d3

)−n
2 +l−1( s+1

d1d4

)−n
2 +l−1( r−1

d2d4

)−n
2 +l−1

×
(

s
d2d3

)−n
2 +l−1

(2r − 1)l−2(2s+ 1)l−2Bl,

where Bl ∈ Z. □

We consider the integrals

In(B,Cj) =

∫ Cj

B

F (x)dx

for j = 1, 2. Then we have:
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Lemma 2.3. Suppose α1 = α2 = 1/2, α3 = 1 if we take Dn = lcm(1, 2, . . . , n)
and

Qn = 2

(
r

d1d3

)n
2
(
s+ 1

d1d4

)n
2
(
r − 1

d2d4

)n
2
(

s

d2d3

)n
2

(2r − 1)(2s+ 1).

Then we have

QnDn

∫ C1

B

F (x)dx ∈ Z+ Z log

(
1 +

1

s

)
,

and

QnDn

∫ C2

B

F (x)dx ∈ Z+ Z log

(
1− 1

r

)
.

Proof. We have∫ Cj

B

F (x)dx

=

∫ Cj

B

(
P (x) +

n+1∑
l=1

(
Al

xl
+

Al

H0(x)l

))
dx

=

∫ Cj

B

P (x)dx+

∫ Cj

B

(
A1

x
+

A1

H0(x)

)
dx+

n+1∑
l=2

∫ Cj

B

(
Al

xl
+

Al

H0(x)l

)
dx

= Λ(B,Cj) + Λ1(B,Cj) +

n+1∑
l=2

Λl(B,Cj),

where

Λ(B,Cj) =

∫ Cj

B

P (x)dx,

Λ1(B,Cj) =

∫ Cj

B

(
A1

x
+

A1

H0(x)

)
dx,

Λl(B,Cj) =

∫ Cj

B

(
Al

xl
+

Al

H0(x)l

)
dx.

(1) Obviously, we have DnQnΛ(B,Cj) ∈ Z for j = 1, 2.
(2) For l > 1 and j = 1, 2, we have

Λl(B,Cj) = − Al

l − 1

(
1

Cl−1
j

− 1

(2B − Cj)l−1

)
.

As l = 1, 2, . . . , n+ 1, then Dn/(l− 1) ∈ Z. By Lemma 2.2 and the definitions
of C1, C2 and B, QnAl/Cj and QnAl/(2B−Cj) are integers, where 2B−C1 =
2s(2r−1) and 2B−C2 = 2(r−1)(2s+1). Then for l > 1, DnQnΛl(B,Cj) ∈ Z
for j = 1, 2.
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(3) For l = 1, we have

Λ1(B,Cj) = A1

∫ Cj

B

(
1

x
+

1

(2B − x)

)
dx = A1 log

x

2B − x

∣∣∣∣Cj

B

,

i.e., Λ1(B,C1) = A1 log
s+1
s and Λ1(B,C2) = A1 log

r
r−1 . By Lemma 2.2,

DnQnA1 ∈ Z. Finally, we have Lemma 2.3. □

For proving that τ in Lemma 2.1 is a positive number in our cases, we need
the following lemmas.

Lemma 2.4. Let α, β be integers with β > α > 0 and h(y) = y(y−α2)(y−β2)
for any y ∈ [0, β2]. Then

maxy∈[0,β2] |h(y)|
(α2β2 − β2)2

≤
√
2 4
√
35α8 − 70α6β2 + 59α4β4 − 24α2β6 + 4β8

(α2 − 1)2 4
√
3150

.

Proof. Noting Agmon’s inequality, we have(
max

y∈[0,β2]
|h(y)|

)2
≤ 2

∫ β2

0

|h(y)||h′(y)|dy

≤ 2

(∫ β2

0

(h(y))2dy

∫ β2

0

(h′(y))2dy

) 1
2

,

i.e.,

max
y∈[0,β2]

|h(y)| ≤
√
2

(∫ β2

0

(h(y))2dy

∫ β2

0

(h′(y))2dy

) 1
4

.

As ∫ β2

0

(h(y))2dy =
α4β10

30
− α2β12

30
+

β14

105
,

∫ β2

0

(h′(y))2dy =
α4β6

3
− α2β8

3
+

2β10

15
,

then∫ β2

0

(h(y))2dy

∫ β2

0

(h′(y))2dy =
β16(35α8−70α6β2+59α4β4−24α2β6+4β8)

3150
,

i.e.,

max
y∈[0,β2]

|h(y)| ≤ β4
√
2 4
√
35α8 − 70α6β2 + 59α4β4 − 24α2β6 + 4β8

4
√
3150

,

consequently, Lemma 2.4 is proved. □

Considering Theorem 1.1.2 in [12], we have:
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Lemma 2.5. Let

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

and

a0 = max(|a0|, |a1|, . . . , |an−1|).

Then all the positive zeros of p(x) are in the interval[
0, 1 +

a0
|an|

)
.

By Lemma 2.5, we obtain the following lemma.

Lemma 2.6. Let α = 2x− 1, β = 2mx+ 1, where m is a positive integer and
x ≥ m(m+ 1) + 1. Then we have

35α8 − 70α6β2 + 59α4β4 − 24α2β6 + 4β8 < 4(β − 1)8.

Proof. Let

H(x) =

8∑
i=0

Ai(m)xi = 4(β − 1)8 − (35α8 − 70α6β2 +59α4β4 − 24α2β6 +4β8),

where A8(m) = 6144m6 − 15104m4 + 17920m2 − 8960, A7(m) = −4096m7 −
6144m6 + 18432m5 + 30208m4 − 30208m3 − 53760m2 + 17920m+ 35840, and
Ai(m) ∈ Z[x] for 0 ≤ i ≤ 6.

If m = 1, 2, by the numerical computation, the equation H(x) = 0 has no
real solution in [3,+∞) and H(3) > 0, as the function H(x) is continuous on
[3,+∞), then for all x ≥ 3 we have H(x) > 0.

If m ≥ 3, then A8(m) > 0, and a0 = max
0≤i≤7

(|Ai(m)|) = A7(m). As m(m +

1) + 1 > 1 +
∣∣A7(m)
A8(m)

∣∣, it implies that x > 1 +
∣∣A7(m)
A8(m)

∣∣. By Lemma 2.5 the

equation H(x) = 0 has no real solution in interval
[
1 +

∣∣A7(m)
A8(m)

∣∣,+∞
)
, as H(x)

is continuous and A8(m) > 0 we obtain H(x) > 0 for all x ≥ m(m + 1) + 1,
then we have Lemma 2.6. □

3. The linear independence measure of 1, log(1 − 1/r), log(1 + 1/s)

In the case r = a, s = ma, where m ≥ 1 and a ≥ 2 are integers, we take α1 =
α2 = 1/2, α3 = 1, and d = lim

n→∞
1
n logDn = 1, where Dn = lcm(1, 2, . . . , n),

then we have:

Theorem 3.1. If 2(a−1)
m(m+1) is even, and q = lim

n→∞
1
n logQn, where

Qn = 2(2a− 1)(2ma+ 1)

(
a− 1

m(m+ 1)

)n
2
(
ma+ 1

m+ 1

)n
2

,
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then for any ε > 0, there exists a positive integer q0(ε), such that, for all
integers p, q1, q2 with max{|q1|, |q2|} ≥ q0(ε),∣∣∣∣p+ q1 log

(
1− 1

a

)
+ q2 log

(
1 +

1

ma

)∣∣∣∣ ≥ q−ν−ε
0 ,

where q0(ε) is effectively computable, and

ν = −d+ q + log |f(ξ3)|
d+ q + log |f(ξ2)|

is a positive number.

Proof. Letm ≥ 1 and a ≥ 2 be two integers with 2(a−1)
m(m+1) is even, i.e., m(m+1) |

(a − 1). Then (m + 1) | (ma + 1). If we substitute r by a and s by ma,
with the definitions in Lemma 2.2, then we have d1 = gcd(a,ma + 1) = 1,
d2 = gcd(a−1,ma) = m, d3 = gcd(a,ma) = a, d4 = gcd(ma+1, a−1) = m+1.
Therefore using Lemma 2.3, we get

Qn = 2(2a− 1)(2ma+ 1)

(
a− 1

m(m+ 1)

)n
2
(
ma+ 1

m+ 1

)n
2

.

If we take Dn = lcm(1, 2, . . . , n), then,

DnQnIn(B,C1) = DnQnΛ(B,C1)+

n∑
l=2

DnQnΛl(B,C1)+DnQnA1 log
ma+ 1

ma
,

DnQnIn(B,C2) = DnQnΛ(B,C2) +

n∑
l=2

DnQnΛl(B,C2) +DnQnA1 log
a

a− 1
.

We denote

DnQnΛ(B,C1) +

n∑
l=2

DnQnΛl(B,C1) = P (1)
n ,

DnQnΛ(B,C2) +

n∑
l=2

DnQnΛl(B,C2) = P (2)
n ,

DnQnIn(B,C1) = ε(1)n , DnQnIn(B,C2) = ε(2)n ,

DnQnA1 = rn, log
ma+ 1

ma
= θ1, log

a

a− 1
= θ2.

Hence using Lemma 2.3, we have P
(1)
n ∈ Z, P (2)

n ∈ Z and rn ∈ Z.
In light of the result in Chapter IX of Dieudonné’s book [8] (see also Lemma

2.4 in [9]), we have

lim
n→∞

1

n
log In(B,Cj) = lim

n→∞

1

n
log

∫ Cj

B

F (x)dx = log f(ξj)

for j = 1, 2, where B, Cj , F (x), f(x) and ξj are defined in Section 2. That is
to say

−τ (1) = lim
n→∞

1

n
log |ε(1)n | = log f(ξ1) + d+ q,
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−τ (2) = lim
n→∞

1

n
log |ε(2)n | = log f(ξ2) + d+ q,

and

σ = lim
n→∞

1

n
log |rn| = log f(ξ3) + d+ q,

where d = lim
n→∞

1
n logDn = 1, q = lim

n→∞
1
n logQn. As |f(ξ2)| ≥ |f(ξ1)| then

τ = min{τ (1), τ (2)} = −(log |f(ξ2)|+ d+ q).

Now we will prove that log |f(ξ2)|+ d+ q < 0 for all m ≥ 1 and a ≥ 2 with
2(a−1)
m(m+1) is even.

Let α = 2a− 1, β = 2ma+ 1 and

g(y) = (f(x))2 =
y(y − α2)(y − β2)

(α2β2 − y)2
,

where y = (x− αβ)2. We have

|f(ξ2)|2 ≤ max
y∈[0,β2]

|g(y)| ≤
maxy∈[0,β2] |y(y − α2)(y − β2)|

(α2β2 − β2)2
.

With Lemma 2.4 and Lemma 2.6, we have

|f(ξ2)|2 ≤
√
2 4
√

35α8 − 70α6β2 + 59α4β4 − 24α2β6 + 4β8

(α2 − 1)2 4
√
3150

<
2(β − 1)2

(α2 − 1)2 4
√
3150

,

i.e.,

|f(ξ2)| <
m

(a− 1)
√
2 8
√
3150

.

As q = 1
2 log

(
(a−1)(ma+1)

m(m+1)2

)
and d = 1, then log |f(ξ2)|+ d+ q < l(a), where

l(x) =
1

2
log

(
m(mx+ 1)

(m+ 1)2(x− 1)

)
+ 1− log(2)

2
− log(3150)

8
.

It is very easy to proof for all m ≥ 1 and x ∈ [2,+∞) we have l(x) < 0. Then
for all m ≥ 1 and all a ≥ 2 with m(m+1) | a−1, we have log |f(ξ2)|+d+q < 0,
i.e., τ = min{τ (1), τ (2)} > 0.

Then by Lemma 2.1, Theorem 3.1 is proved. □

Theorem 3.2. If 2(a−1)
m(m+1) is odd, q = lim

n→∞
1
n logQn, where

Qn = 2n+1(2a− 1)(2ma+ 1)

(
a− 1

m(m+ 1)

)n
2
(
ma+ 1

m+ 1

)n
2

,

and if d+ q+ log |f(ξ2)| < 0, then for any ε > 0, there exists a positive integer
q0(ε), such that, for all integers p, q1, q2 with max{|q1|, |q2|} ≥ q0(ε),∣∣∣∣p+ q1 log

(
1− 1

a

)
+ q2 log

(
1 +

1

ma

)∣∣∣∣ ≥ q−ν−ε
0 ,
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where q0(ε) is effectively computable, and

ν = −d+ q + log |f(ξ3)|
d+ q + log |f(ξ2)|

is a positive number.

In fact, by Lemma 2.3,

Qn = 2n+1(2a− 1)(2ma+ 1)

(
a− 1

m(m+ 1)

)n
2
(
ma+ 1

m+ 1

)n
2

.

If log |f(ξ2)|+ d+ q < 0, with the same argument, Theorem 3.2 is proved.
In particular, if m = 1, then we have:

Corollary 3.3. Let q = lim
n→∞

1
n logQn, where

Qn = 2(2a− 1)(2a+ 1)

(
a− 1

2

)n
2
(
a+ 1

2

)n
2

if 2 ∤ a, and
Qn = 2(2a− 1)(2a+ 1)(a− 1)

n
2 (a+ 1)

n
2

if 2 | a. Then for any ε > 0, there exists a positive integer q0(ε), such that, for
all integers p, q1, q2 with max{|q1|, |q2|} ≥ q0(ε),∣∣∣∣p+ q1 log

(
1− 1

a

)
+ q2 log

(
1 +

1

a

)∣∣∣∣ ≥ q−ν−ε
0 ,

where q0(ε) is effectively computable, and

ν = −d+ q + log |f(ξ3)|
d+ q + log |f(ξ2)|

is a positive number.

Corollary 3.3 is a consequence of Theorem 3.1 and Theorem 3.2 when m = 1,
for 2 ∤ a and 2 | a, respectively.

In the case r = m′a, s = ma, where m > m′ ≥ 1 are integers, we take
also α1 = α2 = 1/2, α3 = 1, and d = lim

n→∞
1
n logDn = 1, where Dn =

lcm(1, 2, . . . , n), then we have:

Theorem 3.4. If m(m+m′) | m′a−1, m′(m+m′) | ma+1 with gcd(m′,m) =
1, q = lim

n→∞
1
n logQn, where

Qn = 2(2m′a− 1)(2ma+ 1)

(
m′a− 1

m(m+m′)

)n
2
(

ma+ 1

m′(m+m′)

)n
2

,

and if d+ q+ log |f(ξ2)| < 0, then for any ε > 0, there exists a positive integer
q0(ε), such that for all integers p, q1, q2 with max{|q1|, |q2|} ≥ q0(ε),∣∣∣∣p+ q1 log

(
1− 1

m′a

)
+ q2 log

(
1 +

1

ma

)∣∣∣∣ ≥ q−ν−ε
0 ,
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where q0(ε) is effectively computable, and

ν = −d+ q + log |f(ξ3)|
d+ q + log |f(ξ2)|

is a positive number.

By Lemma 2.3 we get:

Qn = 2(2m′a− 1)(2ma+ 1)

(
m′a− 1

m(m+m′)

)n
2
(

ma+ 1

m′(m+m′)

)n
2

.

With the same method, we obtain Theorem 3.4.

Remark 3.5. By numerical computation, for all integers 1 ≤ m < 22 and a ≥ 2
in Theorem 3.2, and for infinitely many integers m, m′, a in Theorem 3.4, we
have log |f(ξ2)|+ d+ q < 0.

If we replace a by −a in Theorems 3.1, 3.2 and 3.4, we can also obtain the
measure with different value.

4. Numerical results and two specials cases

With the method above we get, for example, ν(1, log 3/4, log 5/4) ≤ 10.789
replaces 20.515 in [20]. We give some numerical results for ν(1, log(1−1/a), log(1+
1/ma)) in Table 1 and Table 2.

Table 1. The numerical results of Theorem 3.1
m = 2 m = 3 m = 4 m = 5 m = 25 m = 102

a ν a ν a ν a ν a ν a ν
7 8.037 13 11.247 21 13.868 31 16.050 651 33.070 10507 47.303
13 9.047 25 12.855 41 15.824 61 18.234 1301 36.071 21013 50.462
19 9.754 37 13.879 61 17.031 91 19.561 1951 37.831 31519 52.311
25 10.295 49 14.634 81 17.908 121 20.517 2601 39.081 42025 53.623
151 14.189 373 20.356 341 22.466 721 26.628 18201 47.551 178603 60.222

Table 2. The numerical results of Theorem 3.2
m = 2 m = 3 m = 4 m = 5 m = 21

a ν a ν a ν a ν a ν
4 31.041 7 49.058 11 72.054 16 99.991 232 32614.364
10 23.499 19 44.592 31 70.321 46 100.952 694 10721.976
16 23.965 31 46.600 51 73.995 76 106.452 1156 9982.251
22 24.741 43 48.483 71 77.074 106 110.849 1618 9851.788
388 37.084 571 68.969 751 104.928 916 145.524 48742 12192.241

Remark 4.1. The numerical results of case m = 1 in Theorem 3.1 can be found
in Table 4.

Some numerical results for ν(1, log(1− 1/m′a), log(1+1/ma)) can be found
in Table 3.
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Table 3. The numerical results of Theorem 3.4
m = 3 m = 4 m = 5 m = 6

m′ a ν m′ a ν m′ a ν m′ a ν
2 23 4.355 3 47 3.990 2 53 6.257 5 119 3.926
2 53 5.152 3 131 4.786 3 187 5.366 5 449 4.763
2 83 5.587 3 215 5.171 3 307 5.770 5 779 5.111
2 113 5.889 3 803 6.194 4 79 3.955 5 1109 5.333
2 263 6.719 3 887 6.271 4 259 4.772 5 1439 5.498

m = 7 m = 17 m = 23 m = 43

m′ a ν m′ a ν m′ a ν m′ a ν
2 95 7.436 2 485 10.428 5 773 6.026 2 6773 14.631
3 47 4.667 5 1197 6.190 14 6261 4.689 3 1319 8.891
4 289 5.088 13 2707 4.289 17 3193 4.056 34 37687 4.379
5 17 2.606 14 2221 4.172 19 13219 4.591 41 881 3.032
6 167 3.903 16 1087 3.803 22 2023 3.779 42 7223 3.739

On the other hand, in Corollary 3.3, if we optimize the αi in some special
cases, we can improve the measures.

Special case 1. For 2a = (2h − 1)3k − 1 with integers h ≥ 1, k ≥ 2, we
take

α1 =
2k + 1

4k + 1
, α2 =

2k

4k + 1
, α3 =

4k + 2

4k + 1
,

D′
n = lcm(1, 2, . . . , α3n),

and

Q′
n = 2(2a− 1)(2a+ 1)

(
a− 1

3

)α2n

(a+ 1)α1n

if a is even, or

Q′
n = 2(2a− 1)(2a+ 1)

(
a− 1

6

)α2n(a+ 1

2

)α1n

if a is odd, then we have

Q′
nD

′
n

∫ 4a2+2a

4a2−1

F (x)dx ∈ Z+ Z log

(
1− 1

a

)
,

and

Q′
nD

′
n

∫ 4a2+2a−2

4a2−1

F (x)dx ∈ Z+ Z log

(
1 +

1

a

)
.

Hence we have:

Corollary 4.2. If 2a = (2h− 1)3k − 1 with integers h ≥ 1, k ≥ 2, then

ν′
(
1, log

(
1− 1

a

)
, log

(
1 +

1

a

))
= − d′ + q′ + log |f(ξ3)|

max1≤i≤2(d′ + q′ + log |f(ξi)|)
,

where d′ = lim
n→∞

1
n logD′

n and q′ = lim
n→∞

1
n logQ′

n, and ξ1, ξ2 ∈ (4a2 − 1, 4a2 +

2a), ξ3 /∈ (4a2 − 1, 4a2 + 2a) are the extremum points of f(x).

Special case 2. For 2a = (2h − 1)3k + 1 with integers h ≥ 1, k ≥ 2, we
take

α1 =
2k

4k + 1
, α2 =

2k + 1

4k + 1
, α3 =

4k + 2

4k + 1
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and

Q′′
n = 2(2a− 1)(2a+ 1)(a− 1)α2n

(
a+ 1

3

)α1n

if a is even, or

Q′′
n = 2(2a− 1)(2a+ 1)

(
a− 1

2

)α2n(a+ 1

6

)α1n

if a is odd, we have

Q′′
nD

′
n

∫ 4a2+2a

4a2−1

F (x)dx ∈ Z+ Z log

(
1− 1

a

)
,

or

Q′′
nD

′
n

∫ 4a2+2a−2

4a2−1

F (x)dx ∈ Z+ Z log

(
1 +

1

a

)
.

In a similar way, we have:

Corollary 4.3. If 2a = (2h− 1)3k + 1 with integers h ≥ 1, k ≥ 2, then

ν′′
(
1, log

(
1− 1

a

)
, log

(
1 +

1

a

))
= − d′ + q′′ + log |f(ξ3)|

max1≤i≤2(d′ + q′′ + log |f(ξi)|)
,

where q′′ = limn→∞
1
n logQ′′

n, and d′, ξi are defined in Corollary 4.2.

We then obtain, for example, ν′(1, log 3/4, log 5/4) ≤ 9.197 replaces 10.789
given by Theorem 3.2 for m = 1 and a = 4. We give in Table 4, some numerical
results of the linear independence measure of 1, log(1 − 1/a), log(1 + 1/a) for
a ≥ 2, where ν′, ν′′ are given by Corollary 4.2 and Corollary 4.3 respectively.

Table 4. The linear independence measure of 1, log(1− 1/a), log(1 + 1/a)
a ν ν′ a ν ν′′ a ν ν′ a ν ν′′

2 20.019 - 3 4.125 - 4 10.789 9.197 5 5.441 4.736
6 13.042 - 7 6.251 - 8 14.530 - 9 6.840 -
10 15.644 - 11 7.304 - 13 7.686 6.741 14 17.279 12.915
40 22.222 16.535 41 10.279 8.808 67 11.380 10.906 68 24.688 21.983
121 12.703 10.828 122 27.399 22.033 148 28.294 27.662 149 13.169 13.191
202 29.735 24.928 203 13.860 12.762 283 14.604 13,655 284 31,313 26.927
364 32.462 25.399 365 15.172 13.426 850 36.389 29.986 851 17.067 15.553

Remark 4.4. For an integer a in the special cases, there are maybe different m
and k, we may have the different numerical results. In this case, we take the
best.
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[5] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew.

Math. 442 (1993), 19–62. https://doi.org/10.1515/crll.1993.442.19
[6] I. V. Bondareva, M. Y. Luchin, and V. Kh. Salikhov, On the Irrationality Measure

of ln 7, Math. Notes 107 (2020), no. 3-4, 404–412; translated from Mat. Zametki 107
(2020), no. 3, 366–375. https://doi.org/10.4213/mzm11652

[7] D. V. Chudnovsky and G. V. Chudnovsky, Padé and rational approximations to systems
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