Acknowledgement
This work was supported by a 2-Year Research Grant of Pusan National University.
References
- J. Backelin and J. Herzog, On Ulrich-modules over hypersurface rings, in Commutative algebra (Berkeley, CA, 1987), 63-68, Math. Sci. Res. Inst. Publ., 15, Springer, New York, 1989. https://doi.org/10.1007/978-1-4612-3660-3_4
- A. Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39-64. https://doi.org/10.1307/mmj/1030132707
- M. Blaser, D. Eisenbud, and F.-O. Schreyer, Ulrich complexity, Differential Geom. Appl. 55 (2017), 128-145. https://doi.org/10.1016/j.difgeo.2017.06.001
- D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), no. 3, 447-485. https://doi.org/10.2307/2373926
- R.-O. Buchweitz, D. Eisenbud, and J. Herzog, Cohen-Macaulay modules on quadrics, in Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), 58-116, Lecture Notes in Math., 1273, Springer, Berlin, 1987. https://doi.org/10.1007/BFb0078838
- M. Casanellas, R. Hartshorne, F. Geiss, and F.-O. Schreyer, Stable Ulrich bundles, Internat. J. Math. 23 (2012), no. 8, 1250083, 50 pp. https://doi.org/10.1142/S0129167X12500838
- A. C. Dixon, Note on the reduction of a ternary quantic to a symmetrical determinant, Proc. Cambridge Philos. Soc. 11 (1902), 350-351.
- D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35-64. https://doi.org/10.2307/1999875
- D. Eisenbud and F.-O. Schreyer, Boij-Soderberg theory, in Combinatorial aspects of commutative algebra and algebraic geometry, 35-48, Abel Symp., 6, Springer, Berlin, 2011. https://doi.org/10.1007/978-3-642-19492-4_3
- D. Eisenbud, F.-O. Schreyer, and J. Weyman, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc. 16 (2003), no. 3, 537-579. https://doi.org/10.1090/S0894-0347-03-00423-5
- D. Faenzi and Y. Kim, Ulrich bundles on cubic fourfolds, Comment. Math. Helv. 97 (2022), no. 4, 691-728. https://doi.org/10.4171/cmh/546
- D. Grayson and M. Stillman, Macaulay2 - a software system for algebraic geometry and commutative algebra, available at: https://macaulay2.com
- R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer, New York, 1977. https://doi.org/10.1007/978-1-4757-3849-0
- A. Iliev and L. Manivel, On cubic hypersurfaces of dimensions 7 and 8, Proc. Lond. Math. Soc. (3) 108 (2014), no. 2, 517-540. https://doi.org/10.1112/plms/pdt042
- Y. Kim, Macaulay2 scripts: "Remarks on Ulrich bundles on Pfaffian fourfolds, available at: https://sites.google.com/view/yeongrak/publications
- Y. Kim and F.-O. Schreyer, An explicit matrix factorization of cubic hypersurfaces of small dimension, J. Pure Appl. Algebra 224 (2020), no. 8, 106346, 13 pp. https://doi.org/10.1016/j.jpaa.2020.106346
- H. Knorrer, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math. 88 (1987), no. 1, 153-164. https://doi.org/10.1007/BF01405095
- C. Lehn, M. Lehn, C. Sorger, and D. van Straten, Twisted cubics on cubic fourfolds, J. Reine Angew. Math. 731 (2017), 87-128. https://doi.org/10.1515/crelle-2014-0144
- L. Ma, Lech's conjecture in dimension three, Adv. Math. 322 (2017), 940-970. https://doi.org/10.1016/j.aim.2017.10.032
- L. Ma, Lim Ulrich sequences and Lech's conjecture, Invent. Math. 231 (2023), no. 1, 407-429. https://doi.org/10.1007/s00222-022-01149-2
- L. Manivel, Ulrich and aCM bundles from invariant theory, Comm. Algebra 47 (2019), no. 2, 706-718. https://doi.org/10.1080/00927872.2018.1495222
- G. V. Ravindra and A. Tripathi, Remarks on higher-rank ACM bundles on hypersurfaces, C. R. Math. Acad. Sci. Paris 356 (2018), no. 11-12, 1215-1221. https://doi.org/10.1016/j.crma.2018.10.004
- J. Shamash, The Poincar'e series of a local ring, J. Algebra 12 (1969), 453-470. https://doi.org/10.1016/0021-8693(69)90023-4
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Differential Geom. 54 (2000), no. 2, 367-438. https://doi.org/10.4310/jdg/1214341649
- H. L. Truong and H. N. Yen, Stable Ulrich bundles on cubic fourfolds, preprint, arXiv:2206.05285.
- B. Ulrich, Gorenstein rings and modules with high numbers of generators, Math. Z. 188 (1984), no. 1, 23-32. https://doi.org/10.1007/BF01163869