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Abstract. The goal of this study is to instigate various new and novel optimum proximity

point theorems using the notion of implicit relation type i-proximal contraction for non-

self mappings. An illustrated example is used to demonstrate the validity of the obtained

results. Furthermore, some uniqueness results for proximal contractions are also furnished

with partial order and graph. Various well-known discoveries in the present state-of-the-art

are enhanced, extended, unified, and generalized by our findings. As an application, we

generate some fixed point results fulfilling a modified contraction and a graph contraction,

using the profundity of the established results.

1. Introduction and preliminaries

The use of fixed point equations in the form kă = ă can simulate various
topics in pure and applied mathematics, including difference and differential
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equations, discrete and continuous dynamic systems, and variational analysis.
Consequently, fixed point theory is highly valuable in the fields of science and
engineering, particularly for solving the aforementioned equation and optimiz-
ing structures, as proved by [1, 3, 5, 14, 23, 24].

If the operator k is not a self-map, it is unlikely that the equation kă = ă
has a solution because it requires an element in the domain and an element
in the co-domain of the mapping to be equal. In such cases, it is beneficial to
find an approximate value that minimizes the approximation error.

In other words, when k : A → B is a nonself-mapping in the context of a
metric space, the goal is to find an approximate solution ă with the smallest
error ρ(ă,kă). In situations where k, is expected to be a nonself-mapping, the
quantity mină∈A ρ(ă,kă) represents the ideal optimal approximate solution to
the equation kă = ă, which is unlikely to have a solution. If a solution ă
to the above non-linear programming problem satisfies ρ(ă,kă) = ρ(A,B)for
every ă, it becomes a suitable estimation with the lowest feasible error for the
associated equation kă = ă. This solution ă is referred to as the mapping’s
best proximity point, and the research that investigates the possibility of best
proximity points for non-self mappings is known as best proximity results.
Notable papers such as [7, 8, 9, 11, 17, 18, 19, 21] offer a detailed discussion
on best proximity point results.

On the flip side, Popa [15, 16] and Ali and Imdad [2] brought together var-
ious fixed point results by introducing generic contractive conditions through
an implicit connection. Synthesis based on fixed point, common fixed point,
and best proximity point using Popa’s technique can be found in [4, 12, 14, 20]
and related references. Additionally, Berinde established some fruitful fixed
point theorems for almost contractions that preserve an implicit relation in
[21]. Drawing inspiration from the aforementioned works, we first introduce
the concept of implicit relation type i-proximal contraction and then present
some novel best proximity point results based on implicit relation type i-
proximal contraction in this paper. We provide a suitable example to validate
our findings, which combine, expand, and broaden the previous multitude of
results in the current state-of-the-art (see [3, 8, 13]).

The structure of this paper is as follows. In Section 1, we provide the
necessary background concepts to support our work. In Section 2, we present
some new results regarding implicit relation type i-proximal contractions. We
support our findings with a suitable illustrative example. Section 3 is dedicated
to presenting modified results in metric spaces with a graph. In Section 4,
we showcase results in metric spaces that are equipped with a partial order.
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Section 5 includes an application based on implicit relation type modified i-
contraction. Finally, in Section 6, we summarize our article with a conclusion
that outlines the proposed work’s framework.

2. Main results

Let Θ be the set of non-decreasing functions θ : [0,+∞) → [0,+∞) such
that

∑∞
n=1 θ

n(t) < +∞ for all t > 0, where θn is the n-th iterate of θ.

Let F be the set of all continuous functions £ : R6
+ → R satisfying the

following assertions:
(F1) if £(∂,ð,ð, ∂, ∂ + ð, 0) ≤ 0 where ∂,ð > 0, then ∂ ≤ θ(ð);
(F2) £ is decreasing in τ5;
(F3) if £(∂,ð, 0, ∂ + ð, ∂, ð) ≤ 0 where ∂,ð ≥ 0, then ∂ ≤ θ(ð);
(F4) £(∂, ∂, 0, 0, ∂, ∂) > 0 for all ∂ > 0.

Example 2.1. Let

£(τ1, τ2, τ3, τ4, τ5, τ6) = τ1 − θ
(

max

{
τ2, τ3, τ4,

τ5 + τ6

2

})
,

where θ ∈ Θ. Then £ ∈ F .

Example 2.2. Let

£(τ1, τ2, τ3, τ4, τ5, τ6) = τ1 − aτ2 −
b[1 + τ3]τ4

1 + τ2
− c[τ3 + τ4]− d[τ5 + τ6],

where a+ b+ 2c+ 2d < 1. Then £ ∈ F .

Definition 2.3. Let two nonempty subsets A and B of a metric space (X, ρ)
and i : A×A→ [0,∞) be a function. Then implicit relation type i-proximal
contraction define as k : A→ B, if for all ă, ã, ∂, ð ∈ A, i(ă, ã) ≥ 1,

ρ(∂,kă) = ρ(A,B),
ρ(ð,kã) = ρ(A,B)

then

£
(
ρ(∂,ð), ρ(ă, ã), ρ(ă, ∂), ρ(ã,ð), ρ(ă,ð), ρ(ã, ∂)

)
≤ 0, (2.1)

where £ ∈ F .

Definition 2.4. Let (X, ρ) be a metric space and two nonempty subsets A
and B of X. Then B is said to be approximatively compact with respect to
A if every sequence {ãn} in B, satisfying the condition ρ(ă, ãn)→ ρ(ă, B) for
some ă in A, has a convergent subsequence.
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Theorem 2.5. Let two nonempty subsets A,B of a metric space (X, ρ) such
that A is complete and A0 is nonempty. Let continuous implicit relation type
i-proximal contraction as k : A→ B such that the following conditions hold:

(i) k is a an i-proximal admissible mapping and k(A0) ⊆ B0,
(ii) there exist ă0, ă1 ∈ A0 such that

ρ(ă1,kă0) = ρ(A,B) and i(ă0, ă1) ≥ 1.

Then k has a best proximity point. Further, the best proximity point is unique
if,

(iii) for every ă, ã ∈ A with ρ(ă,kă) = ρ(A,B) = ρ(ã,kã), we have
i(ă, ã) ≥ 1.

Proof. By (ii) there exist ă0, ă1 ∈ A0 such that

ρ(ă1,kă0) = ρ(A,B) and i(ă0, ă1) ≥ 1.

On the other hand, k(A0) ⊆ B0, then there exists ă2 ∈ A0 such that

ρ(ă2,kă1) = ρ(A,B).

Now, since k is i-proximal admissible, we have i(ă1, ă2) ≥ 1. Thus

ρ(ă2,kă1) = ρ(A,B) and i(ă1, ă2) ≥ 1.

Since k(A0) ⊆ B0, there exists ă3 ∈ A0 such that

ρ(ă3,kă2) = ρ(A,B).

Then, we have

ρ(ă2,kă1) = ρ(A,B), ρ(ă3,kă2) = ρ(A,B), i(ă1, ă2) ≥ 1.

Again, since k is i-proximal admissible, we obtain that i(ă2, ă3) ≥ 1 and
hence

ρ(ă3,kă2) = ρ(A,B), i(ă2, ă3) ≥ 1.

By continuing this process, we construct a sequence {ăn} such that i(ăn−1, ăn) ≥ 1,
ρ(ăn+1,kăn) = ρ(A,B),
ρ(ăn,kăn−1) = ρ(A,B)

(2.2)

for all n ∈ N. Now, from (2.1) with ∂ = ăn, ð = ăn+1, ă = ăn−1 and ã = ăn,
we get,

£

(
ρ(ăn, ăn+1), ρ(ăn−1, ăn), ρ(ăn−1, ăn), ρ(ăn, ăn+1),

ρ(ăn−1, ăn+1), ρ(ăn, ăn)

)
≤ 0.



Proximal type convergence results using implicit relation and applications 213

Now, since £ is decreasing in τ5 then,

£

(
ρ(ăn, ăn+1), ρ(ăn−1, ăn), ρ(ăn−1, ăn), ρ(ăn, ăn+1),

ρ(ăn, ăn+1) + ρ(ăn−1, ăn), 0

)
≤ 0

and so from (F1) we get,

ρ(ăn, ăn+1) ≤ θ(ρ(ăn−1, ăn)).

By induction, we have

ρ(ăn, ăn+1) ≤ θn(ρ(ă0, ă1)).

Fix ε > 0, there exists N ∈ N such that∑
n≥N

θn(ρ(ă0, ă1)) < ε, ∀n ∈ N.

Let m,n ∈ N with m > n ≥ N . Then by triangular inequality we get

ρ(ăn, ăm) ≤
m−1∑
k=n

ρ(ăk, ăk+1) ≤
∑
n≥N

θn(ρ(ă0, ă1)) < ε.

Consequently limm,n,→+∞ ρ(ăn, ăm) = 0. Hence {ăn} is a Cauchy sequence.
Since A is complete, so there is â ∈ A such that ăn → â. Since k is continuous,
so kăn → kâ as n→∞. Hence,

ρ(A,B) = lim
n→∞

ρ(ăn+1,kăn) = ρ(â,kâ).

Thus â is desired best proximity point of k.
Let ă, ã ∈ A be two best proximity point of k such that ă 6= ã. That is,

ρ(ă,kă) = ρ(A,B) = ρ(ã,kã). From (iii) we get, i(ă, ã) ≥ 1. So, by (2.1) we
derive,

£
(
ρ(ă, ã), ρ(ă, ã), ρ(ă, ă), ρ(ã, ã), ρ(ã, ă), ρ(ă, ã)

)
≤ 0,

which implies

£
(
ρ(ă, ã), ρ(ă, ã), 0, 0, ρ(ă, ã), ρ(ă, ã)

)
≤ 0,

which is a contradiction to (F4). Hence, k has a unique best proximity point.
�
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Example 2.6. Let X = {0, 1, 2, 3, 4, 5} be endowed with the function ρ given
as:

ρ 0 1 2 3 4 5
0 0 1.2 1.1 1 1.3 1.4
1 1.2 0 2 1.5 1 1.6
2 1.1 2 0 1.7 1.8 1
3 1 1.5 1.7 0 1.9 2
4 1.3 1 1.8 1.9 0 1.5
5 1.4 1.6 1 2 1.5 0

It is easy to see that (X, ρ) is metric space. Suppose A = {0, 1, 2} and B =
{3, 4, 5}. After a simple calculation, ρ(A,B) = 1 and A0 = A and B0 = B.
Now, define a mapping k : A→ B by the following

kă =

{
3, if ă = {0, 2},
5, if ă = 1.

Clearly, k(A0) ⊆ B0. Now, we have to show that k satisfies an implicit relation
type i-proximal contraction

£(ρ(∂,ð), ρ(ă, ã), ρ(ă, ∂), ρ(ã,ð), ρ(ă,ð), ρ(ã, ∂)) ≤ 0

for all ă, ã, ∂, ð ∈ A and for the function i : A×A→ [0,+∞) defined by

i(ă, ã) = ρ(ă, ã) + 1.

Since

ρ(0,k2) = ρ(0, 3) = ρ(A,B),

ρ(2,k1) = ρ(2, 5) = ρ(A,B).

After routine calculations, i(ă, ã) = ρ(2, 1) + 1 = 3.
Suppose

£(τ1, τ2, τ3, τ4, τ5, τ6) = τ1 − aτ2 −
b[1 + τ3]τ4

1 + τ2
− c[τ3 + τ4]− e[τ5 + τ6],

where a+ b+ 2c+ 2e < 1. Then,

£(1.1, 2, 1.1, 2, 0, 1.2) = 1.1− 2a− 1.4b− 3.1c− 1.2e.

After choosing a = 1
2 , b = 1

7 , c = 1
11 and e = 1

13 , where a + b + 2c + 2e =
0.9785 < 1 and

£(τ1, τ2, τ3, τ4, τ5, τ6) = −0.4741 ≤ 0.

Hence, 0 is the unique best proximity point of the mapping k.

Theorem 2.7. Let two nonempty subsets A and B of a metric space (X, ρ)
such that A is complete, B is approximatively compact with respect to A and
A0 is nonempty. Assume that an implicit relation type i-proximal contraction
define as k : A→ B such that the following conditions hold:
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(i) k is an i-proximal admissible mapping and k(A0) ⊆ B0,
(ii) there exist ă0, ă1 ∈ A0 such that

ρ(ă1,kă0) = ρ(A,B) and i(ă0, ă1) ≥ 1,

(iii) if {ăn} is a sequence in X such that i(ăn, ăn+1) ≥ 1 with ăn → ă as
n→∞, then i(ăn, ă) ≥ 1.

Then k has a best proximity point. Further, the best proximity point is unique
if,

(iv) for every ă, ã ∈ A where ρ(ă,kă) = ρ(A,B) = ρ(ã,kã), we have
i(ă, ã) ≥ 1.

Proof. Following the proof of Theorem 2.5, there exist a Cauchy sequence
{ăn} ⊆ A and â ∈ A such that (2.1) holds and ăn → â as n → +∞. On the
other hand, for all n ∈ N, we can write

ρ(â, B) ≤ ρ(â,kăn)

≤ ρ(â, ăn+1) + ρ(ăn+1,kăn)

= ρ(â, ăn+1) + ρ(A,B).

Taking the limit as n→ +∞ in the above inequality, we get

lim
n→+∞

ρ(â,kăn) = ρ(â, B) = ρ(A,B). (2.3)

Since, B is approximatively compact with respect to A, the sequence, {kăn}
has a subsequence {kănk

} that converges to some ã∗ ∈ B. Hence,

ρ(â, ã∗) = lim
n→∞

ρ(ănk+1,kănk
) = ρ(A,B)

and so â ∈ A0. Now, since k(A0) ⊆ B0 so, ρ(w,kâ) = ρ(A,B) for some w ∈ A.
Now, by (iii) and (2.2), we have i(ăn, â) ≥ 1 and ρ(ăn+1,kăn) = ρ(A,B) for all
n ∈ N∪{0}. Also, since k is an implicit relation type i-proximal contraction,
we get,

£
(
ρ(ăn+1, w), ρ(ăn, â), ρ(ăn, ăn+1), ρ(â, w), ρ(ăn, w), ρ(â, ăn+1)

)
≤ 0.

Taking the limit as n→ +∞ in the above inequality and applying continuity
of £, we have

£
(
ρ(â, w), 0, 0, ρ(â, w), ρ(â, w), 0

)
≤ 0.

Now if we take ∂ = ρ(â, w) and ð = 0, then we have

£
(
∂,ð, 0, ∂ + ð, ∂, ð

)
≤ 0

and so, from (F3) we get, ∂ ≤ θ(ð). That is ρ(â, w) ≤ θ(0) = 0. Thus, â = ð.
Hence â is a best proximity point of k. Uniqueness follows similarly as in the
proof of Theorem 2.5. �
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By using Example 2.2 and Theorem 2.7 we obtain following main result of
Hussain et al. [8] for ℘(ă, ã) = 1.

Corollary 2.8. ([8, Theorem 11]) Let A and B be nonempty closed subsets
of a complete metric space (X, ρ) such that B is approximatively compact with
respect to A. Assume i : A × A → [0,∞), A0 and B0 are nonempty and
k : A → B is an i-rational proximal contraction of the first kind satisfying
the following assertions:

(i) k(A0) ⊆ B0;
(ii) k is i-proximal admissible;

(iii) There exist elements ă0 and ă1 in A0 such that,

ρ(ă1,kă0) = ρ(A,B) and i(ă0, ă1) ≥ 1;

(iv) If {ăn} is a sequence in A such that i(ăn, ăn+1) ≥ 1 and ăn → ă ∈ A
as n→∞, then i(ăn, ă) ≥ 1 for all n ∈ N.

Then there exists â ∈ A0 such that

ρ(â,kâ) = ρ(A,B).

Moreover, if i(ă, ã) ≥ 1 for all ă, ã ∈ Best(k), then â is the unique best
proximity point of k.

By taking i(ă, ã) = 1 in Theorem 2.7 we deduce the following corollary.

Corollary 2.9. Let A and B be two nonempty subsets of a metric space (X, ρ)
such that A is complete, B is approximatively compact with respect to A and
A0 is nonempty. Assume that k : A → B is a nonself-mapping such that
kA0 ⊆ B0 and for all ă, ã, ∂, ð ∈ A,{

ρ(∂,kă) = ρ(A,B),
ρ(ð,kã) = ρ(A,B)

then

£
(
ρ(∂,ð), ρ(ă, ã), ρ(ă, ∂), ρ(ã,ð), ρ(ã, ∂), ρ(ă,ð)

)
≤ 0,

where £ ∈ F . Then k has a unique best proximity point.

By using Example 2.1 and Corollary 2.9 we deduce the following result.

Corollary 2.10. Let A and B be two nonempty subsets of a metric space
(X, ρ) such that A is complete, B is approximatively compact with respect to
A and A0 is nonempty. Assume that k : A → B is a nonself-mapping such
that kA0 ⊆ B0 and for all ă, ã, ∂, ð ∈ A,{

ρ(∂,kă) = ρ(A,B),
ρ(ð,kã) = ρ(A,B)
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then

ρ(∂,ð) ≤ θ
(

max

{
ρ(ă, ã), ρ(ă, ∂), ρ(ã,ð),

ρ(ã, ∂) + ρ(ă,ð)

2

})
,

where θ ∈ Θ. Then k has a unique best proximity point.

By using Example 2.2 and Corollary 2.9 we obtain the following result.

Corollary 2.11. (Main result of [13]) Let A and B be two nonempty sub-
sets of a metric space (X, ρ) such that A is complete, B is approximatively
compact with respect to A and A0 is nonempty. Assume that k : A → B
is a nonself-mapping such that kA0 ⊆ B0 and there exists nonnegative real
numbers a, b, c, d with a+ b+ 2c+ 2d < 1 such that for all ă, ã, ∂, ð ∈ A,{

ρ(∂,kă) = ρ(A,B)
ρ(ð,kã) = ρ(A,B)

=⇒ ρ(∂,ð) ≤ aρ(ă, ã) + b
[1 + ρ(ă, ∂)]ρ(ã,ð)

1 + ρ(ă, ã)
+c[ρ(ă, ∂) + ρ(ã,ð)]
+ρ[ρ(ă,ð) + ρ(ã, ∂)].

Then k has a unique best proximity point.

3. Some results in metric spaces endowed with a graph

Following Jachymski [10], let (X, ρ) be a metric space and let ∆ denote the
diagonal of the Cartesian product X × X. Let G be a directed graph such
that the set of its vertices V (G) coincides with X, and the set of its edges∧

(G) contains all loops, that is,
∧

(G) ⊇ ∆. We assume that G has no parallel
edges, so we can identify G with the pair (V (G),

∧
(G)). Moreover, we may

treat G as a weighted graph (see [10]) by assigning to each edge the distance
between its vertices. If ă and ã are vertices in a graph G, then a path in G
from ă to ã of length N (N ∈ N) is a sequence {ăi}Ni=0 of N + 1 vertices such
that ă0 = ă, ăN = ã and (ăn−1, ăn) ∈

∧
(G) for i = 1, ..., N. A graph G is

connected if there is a path between any two vertices. G is weakly connected
if G̃ is connected (see for details [5, 9, 10, 22, 25]).

In 2006, Espinola and Kirk [6] established an important combination of
fixed point theory and graph theory.

Definition 3.1. Let A,B be two nonempty closed subsets of a metric space
(X, ρ) equipped with a graph G. An implicit relation type G-proximal con-
traction k : A→ B is defined as follows: for all ă, ã, ∂, ð ∈ A, (ă, ã) ∈

∧
(G)

ρ(∂,kă) = ρ(A,B)
ρ(ð,kă) = ρ(A,B)

⇒ (∂,ð) ∈
∧

(G)
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and (ă, y) ∈
∧

(G)
ρ(∂,kă) = ρ(A,B)
ρ(ð,kã) = ρ(A,B)

then
£
(
ρ(∂,ð), ρ(ă, ã), ρ(ă, ∂), ρ(ã,ð), ρ(ã, ∂), ρ(ă,ð)

)
≤ 0,

where £ ∈ F .

Theorem 3.2. Let A,B be two nonempty closed subsets of a metric space
(X, ρ) endowed with a graph G. Let A be complete, A0 be nonempty and
k : A → B be a continuous implicit relation type G-proximal contraction
Satisfying the following conditions:

(i) k(A0) ⊆ B0,
(ii) there exist elements ă0, ă1 ∈ A0 such that

ρ(ă1,kă0) = ρ(A,B) and (ă0, ă1) ∈
∧

(G).

Then k has a best proximity point. Further, the best proximity point is unique,
if for every ă, y ∈ A such that ρ(ă,kă) = ρ(A,B) = ρ(ã,kã), we have (ă, ã) ∈∧

(G).

Proof. Define i : X× X→ [0,+∞) by

i(ă, ã) =

{
1, if (ă, ã) ∈

∧
(G),

1

2
, otherwise.

Firstly, we prove that k is a triangular i-proximal admissible mapping. To
this aim, assume  i(ă, ã) ≥ 1,

ρ(∂,kă) = ρ(A,B),
ρ(ð,kã) = ρ(A,B).

Therefore, we have  (ă, ã) ∈
∧

(G),
ρ(∂,kă) = ρ(A,B),
ρ(ð,kã) = ρ(A,B).

Since k is an implicit relation type G-proximal contraction, we get (∂,ð) ∈∧
(G), that is i(∂, v) ≥ 1 and

£
(
ρ(∂,ð), ρ(ă, ã), ρ(ă, ∂), ρ(ã,ð), ρ(ã, ∂), ρ(ă,ð)

)
≤ 0.

Thus, k is an i-proximal admissible mapping with k(A0) ⊆ B0 and con-
tinuous implicit relation type G-proximal contraction. From (ii) there ex-
ist ă0, ă1 ∈ A0 such that ρ(ă1,kă0) = ρ(A,B) and (ă0, ă1) ∈

∧
(G), that is

ρ(ă1,kă0) = ρ(A,B) and i(ă0, ă1) ≥ 1. Hence, all the conditions of Theorem
2.5 are satisfied and k has a best fixed point. �
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Similarly, by using Theorem 2.7, we can prove the following theorem.

Theorem 3.3. Let A and B be two nonempty closed subsets of a metric space
(X, ρ) endowed with a graph G. Assume that A is complete, B is approxi-
matively compact with respect to A and A0 is nonempty. Also suppose that
k : A → B is an implicit relation type G-proximal contraction mapping such
that the following conditions hold:

(i) k(A0) ⊆ B0,
(ii) there exist elements ă0, ă1 ∈ A0 such that

ρ(ă1,kă0) = ρ(A,B) and (ă0, ă1) ∈
∧

(G),

(iii) if {ăn} is a sequence in X such that (ăn, ăn+1) ∈
∧

(G) for all n ∈ N∪
{0} and ăn → ă as n→ +∞, then (ăn, ă) ∈

∧
(G) for all n ∈ N ∪ {0}.

Then k has a best proximity point. Further, the best proximity point is unique,
if for every ă, ã ∈ A such that ρ(ă,kă) = ρ(A,B) = ρ(ã,kã), we have (ă, ã) ∈∧

(G).

4. Some results in metric spaces endowed with a partial order

Theorem 4.1. Let two nonempty closed subsets A and B of a partially ordered
complete metric space (X, ρ,�) such that A0 is nonempty. Assume that k :
A→ B satisfy the following conditions:

(i) k is continuous and proximally ordered-preserving such that k(A0) ⊆
B0,

(ii) there exist elements ă0, ă1 ∈ A0 such that

ρ(ă1,kă0) = ρ(A,B) and ă0 � ă1,

(iii) for all ă, ã, ∂, ð ∈ A, ă � ã
ρ(∂,kă) = ρ(A,B)
ρ(ã,kã) = ρ(A,B)

⇒£
(
ρ(∂,ð), ρ(ă, ã), ρ(ă, ∂), ρ(ã,ð), ρ(ã, ∂), ρ(ă,ð)

)
≤0.

Then k has a best proximity point.

Proof. Define i : A×A→ [0,+∞) by

i(ă, ã) =

{
1, if ă � ã,
1

2
, otherwise.

Firstly, we prove that k is an i-proximal admissible mapping. To this aim,
assume  i(ă, ã) ≥ 1,

ρ(∂,kă) = ρ(A,B),
ρ(ð,kã) = ρ(A,B).
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Then, we have  ă � ã,
ρ(∂,kă) = ρ(A,B),
ρ(ð,kã) = ρ(A,B).

Now, since k is proximally ordered-preserving, ∂ � ð, that is i(∂,ð) ≥ 1.
Further, by (ii) we have

ρ(ă1,kă0) = ρ(A,B) and i(ă0, ă1) ≥ 1.

Moreover, from (iii) we get i(ă, ã) ≥ 1
ρ(∂,kă) = ρ(A,B)
ρ(ã,kã) = ρ(A,B)

⇒£
(
ρ(∂,ð), ρ(ă, ã), ρ(ă, ∂), ρ(ã,ð), ρ(ã, ∂), ρ(ă,ð)

)
≤0.

Thus, all the conditions of Theorem 2.5 hold and k has a best proximity
point. �

Theorem 4.2. Let two nonempty closed subsets A and B of a partially ordered
complete metric space (X, ρ,�) such that A0 is nonempty and B is approxima-
tively compact with respect to A. Assume that k : A→ B satisfy the following
conditions:

(i) k is proximally ordered-preserving such that k(A0) ⊆ B0,
(ii) there exist elements ă0, ă1 ∈ A0 such that

ρ(ă1,kă0) = ρ(A,B) and ă0 � ă1,

(iii) for all ă, ã, ∂, ð ∈ A, ă � ã
ρ(∂,kă) = ρ(A,B)
ρ(ã,kã) = ρ(A,B)

⇒£
(
ρ(∂,ð), ρ(ă, ã), ρ(ă, ∂), ρ(ã,ð), ρ(ã, ∂), ρ(ă,ð)

)
≤0.

(iv) if {ăn} is an increasing sequence in A converging to ă ∈ A, then ăn � ă
for all n ∈ N.

Then k has a best proximity point.

5. Application to fixed point theory

5.1. Implicit relation type modified i-contraction.

Definition 5.1. Let (X, ρ) be a metric space and a function defined as i :
A × A → [0,∞). Then k : X → X is called an implicit relation type i-
contraction, if for all ă, ã ∈ X with i(ă, ã) ≥ 1, we have

£
(
ρ(kă,kã), ρ(ă, ã), ρ(ă,kă), ρ(ã,kã), ρ(ã,kă), ρ(ă,kã)

)
≤ 0, (5.1)

where £ ∈ F .
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Theorem 5.2. Let (X, ρ) be a complete metric space. Assume that continuous
self-mapping is k : X→ X satisfying the following conditions:

(i) k is i-admissible,
(ii) there exists ă0 in X such that i(ă0,kă0) ≥ 1,

(iii) k is an implicit relation type modified i-contraction.

Then k has a fixed point.

Theorem 5.3. Let (X, ρ) be a complete metric space. Assume that self-
mapping k : X→ X is satisfied the following conditions:

(i) k is i-admissible,
(ii) there exists ă0 in X such that i(ă0,kă0) ≥ 1,

(iii) k is an implicit relation type modified i-contraction,
(iv) if {ăn} is a sequence in X such that i(ăn, ăn+1) ≥ 1 and ăn → ă as

n→ +∞, then i(ăn, ă) ≥ 1 for all n ∈ N.
Then k has a fixed point.

5.2. Implicit relation type G-contraction. Recently, many fixed point re-
sults have appeared for different kinds of contractive mappings defined on
metric space (X, ρ) endowed with a graph (see [10]).

Definition 5.4. ([10]) We say that a mapping k : X → X is a Banach G-
contraction or simply G-contraction, if k preserves edges of G, that is

∀ă, ã ∈ X((ă, ã) ∈
∧

(G), (k(ă),k(ã)) ∈
∧

(G))

and k decreases weights of edges of G in the following way:

∃ i ∈ (0, 1),∀ă, ã ∈ X((ă, ã) ∈
∧

(G), ρ(k(ă),k(ã)) ≤ iρ(ă, ã)).

Definition 5.5. ([10]) A mapping k : X→ X is called G-continuous, if given
ă ∈ X and sequence {ăn}

ăn → ă as n→∞ and (ăn, ăn+1) ∈
∧

(G) for alln ∈ N imply kăn → kă.

Definition 5.6. Let (X, ρ) be a metric space endowed with a graph G. Then
k : X → X is said to be an implicit relation type G-contraction, if for all
ă, ã ∈ X,

(ă, ã) ∈
∧

(G) ⇒ (kă,kã) ∈
∧

(G)

and

(ă, ã) ∈
∧

(G)⇒ £
(
ρ(kă,kã), ρ(ă, ã), ρ(ă,kă), ρ(ã,kã), ρ(ã,kă), ρ(ă,kã)

)
≤0,

where £ ∈ F .
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Theorem 5.7. Let (X, ρ) be a complete metric space endowed with a graph
G. Assume that continuous self-mapping k : X → X satisfies the following
conditions:

(i) there exists ă0 in X such that (ă0,kă0) ∈
∧

(G),
(ii) k is an implicit relation type G-contraction.

Then k has a fixed point.

Theorem 5.8. Let (X, ρ) be a complete metric space endowed with a graph
G. Assume that self-mapping k : X→ X satisfies the following conditions:

(ii) there exists ă0 in X such that (ă0,kă0) ∈
∧

(G),
(iii) k is an implicit relation type G-contraction,
(iv) if {ăn} is a sequence in X such that (ăn, ăn+1) ∈

∧
(G) and ăn → x as

n→ +∞, then (ăn, ă) ∈
∧

(G) for all n ∈ N.
Then k has a fixed point.

Theorem 5.9. ([3, Theorem 3.2]) Let (X, ρ,�) be a partially ordered complete
metric space. Assume that self-mapping k : X → X satisfying the following
conditions:

(i) there exists ă0 in X such that ă0 � kă0,
(ii) for all ă, ã ∈ X with ă � ã, we have

£
(
ρ(kă,kã), ρ(ă, ã), ρ(ă,kă), ρ(ã,kã), ρ(ã,kă), ρ(ă,kã)

)
≤ 0,

where £ ∈ F ,
(iii) either k is continuous or if {ăn} is an increasing sequence in X such

that ăn → ă as n→ +∞, then ăn � ă for all n ∈ N.
Then k has a fixed point.

6. Conclusion

The best proximity point theorem states that there is a solution ă which
approximates a given point kă in the optimal sense that the error ρ(ă,kă) is
minimized globally at ρ(A,B). In this study, we introduced the concept of
i−proximal contraction of implicit relation type for nonself-mappings, to es-
tablish new and innovative theorems on best proximity points. Within the
framework of metric spaces, we developed some significant results on the
uniqueness of proximal point outcomes. Using the approach of implicit re-
lations, we derived a plethora of results that enhance, extend, unify, and
generalize various well-known results in the current state-of-the-art. Subse-
quently, we applied our findings to examine modified results based on modified
contractions and graph contractions.
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