DOI QR코드

DOI QR Code

QUALITATIVE ANALYSIS OF ABR-FRACTIONAL VOLTERRA-FREDHOLM SYSTEM

  • Shakir M. Atshan (Department of Mathematics, Thi-Qar Directorates of Education, Ministry of Education) ;
  • Ahmed A. Hamoud (Department of Mathematics, Taiz University)
  • 투고 : 2023.06.21
  • 심사 : 2023.08.31
  • 발행 : 2024.03.15

초록

In this work, we explore the existence and uniqueness results for a class of boundary value issues for implicit Volterra-Fredholm nonlinear integro-differential equations (IDEs) with Atangana-Baleanu-Riemann fractional (ABR-fractional) that have non-instantaneous multi-point fractional boundary conditions. The findings are supported by Krasnoselskii's fixed point theorem, Gronwall-Bellman inequality, and the Banach contraction principle. Finally, a demonstrative example is provided to support our key findings.

키워드

참고문헌

  1. R.P. Agarwal, Y. He and Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59(3) (2010), 1095-1100. https://doi.org/10.1016/j.camwa.2009.05.010
  2. S. Ahmad, A. Ullah, A. Baleanu and D. Baleanu, Analysis of the fractional tumourimmune-vitamins model with MittagLeffler kernel, Results in Phys., 19 103559, (2020), 1-12. https://doi.org/10.1016/j.rinp.2020.103559
  3. A.O. Akdemir, S.I. Butt, M. Ragusa and M.A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics, 9(2) (2021), 122-136. https://doi.org/10.3390/math9020122
  4. A. Akgul, A. Torregrosa and J.R. Torregrosa, Solutions of fractional gas dynamics equation by a new technique, Math. Meth. Appl. Sci., 43(3) (2019), 1349-1358. https://doi.org/10.1002/mma.5950
  5. M. Alesemi, N. Iqbal and A.A. Hamoud, The analysis of fractional-order proportional delay physical models via a novel transform, Complexity, 2022 (2022), 1-13. https://doi.org/10.1155/2022/2431533
  6. A. Baleanu and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal Science, 20(2) (2016), 763-769. https://doi.org/10.2298/TSCI160111018A
  7. E. Bonyah and R. Zarin Fatmawati, Mathematical modeling of cancer and hepatitis codynamics with non-local and nonsingular kernel, Comm. Math. Bio. Neuro., 91 (2020), 1-14.
  8. S. Etemad, M.M. Matar, M.A. Rezapour and S. Rezapour, Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness, Mathematics, 10(1) (2021), 20-29. https://doi.org/10.3390/math10010020
  9. K. Ford and N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265(2) (2002), 229-248. https://doi.org/10.1006/jmaa.2000.7194
  10. B. Ghanbari, S. Kumar and R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos, Solitons Fractals, 133 109619, (2020), 1-14. https://doi.org/10.1016/j.chaos.2020.109619
  11. T.L. Guo and J. Wei, Impulsive problems for fractional differential equations with boundary value conditions, Comput. Math. Appl., 64(10) (2012), 3281-3291. https://doi.org/10.1016/j.camwa.2012.02.006
  12. A. Hamoud, Existence and uniqueness of solutions for fractional neutral VolterraFredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4(4) (2020), 321-331. https://doi.org/10.31197/atnaa.799854
  13. A. Hamoud, M.SH. Bani Issa and K. Ghadle, Existence and uniqueness results for nonlinear Volterra-Fredholm integro-differential equations, Nonlinear Funct. Anal. Appl., 23(4) (2018), 797-805. https://doi.org/10.7862/rf.2018.9
  14. A. Hamoud and K. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech., 5(1) (2019), 58-69. https://doi.org/10.7862/rf.2018.9
  15. A. Hamoud and K. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations, Iranian J. Math. Sci. Infor., 17(1) (2022), 135-144. https://doi.org/10.52547/ijmsi.17.1.135
  16. A. Hamoud and N. Mohammed, Existence and uniqueness of solutions for the neutral fractional integro differential equations, Dyna. Conti. Disc. and Impulsive Syst. Series B: Appl. Algo., 29 (2022), 49-61.
  17. A. Hamoud and N. Mohammed, Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear Volterra-Fredholm integral equations, Discontinuity, Nonlinearity and Complexity, 11(3) (2022), 515-521. https://doi.org/10.5890/DNC.2022.09.012
  18. M. Hedia and B. Hedia, An existence results for a fractional differential equation with Φ-fractional derivative, Filomat, 36(3) (2022), 753-762. https://doi.org/10.2298/FIL2203753B
  19. K. Hussain, A. Hamoud and N. Mohammed, Some new uniqueness results for fractional integro-differential equations, Nonlinear Funct. Anal. Appl., 24(4) (2019), 827-836.
  20. K. Ivaz, I. Alasadi and A. Hamoud, On the Hilfer fractional Volterra-Fredholm integro differential equations, IAENG International Journal of Applied Mathematics, 52(2) (2022), 426-431. 
  21. A. Jajarmi, S. Arshad and D. Baleuno, A new fractional modeling and control strategy for the outbreak of dengue fever, Physics, 535 (2019), 1-13.
  22. F. Jarad, T. Hammouch and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana Baleanu fractional derivative, Chaos, Solitons Fractals, 117 (2018), 16-20. https://doi.org/10.1016/j.chaos.2018.10.006
  23. A.A. Kilbas, M. Saxena and R.K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integ. Trans. Special Funct., 15(1) (2004), 31-49. https://doi.org/10.1080/10652460310001600717
  24. K.D. Kucche, J.J. Venktesh and V. Venktesh, Theory of nonlinear implicit fractional differential equations, Diff. Equ. Dyn. Syst., 28(1) (2020), 1-17. https://doi.org/10.1007/s12591-016-0297-7
  25. S. Kumar, A. Kumar, B. Samet, J.F. Gomez-Aguilar and M.S. Osman, A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment, Chaos, Solitons Fractals, 141 110321, (2020), 1-11. https://doi.org/10.1016/j.chaos.2020.110321
  26. K. Logeswari, C. Nisar and K.S. Nisar, Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel, Num. Meth. Partial Diff. Equ., 22652, (2020), 1-13. https://doi.org/10.1002/num.22652
  27. T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, The Yokohama Math. J., 19 (1971), 7-15.
  28. R. Safdar, M. Jawad, S. Hussain, M. Imran, A. Jamshed and W. Jamshed, Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of buongiorno's model, Chinese J. Physics, 77 (2022), 1465-1478. https://doi.org/10.1016/j.cjph.2021.11.022
  29. H.L. Tidke, Some theorems on fractional semiliear evolution equations, J. Appl. Anal., 18 (2012), 209-224. https://doi.org/10.1515/jaa-2012-0014
  30. W. Yukunthorn, S. Suantai, S.K. Tariboon and J. Tariboon, Boundary value problems for impulsive multi-order Hadamard fractional differential equations, Boundary Value Prob., 2015(1) (2015), 1-15.  https://doi.org/10.1186/s13661-015-0414-5