DOI QR코드

DOI QR Code

대전 화강암의 투수계수에 미치는 구속압, 온도, 공극률의 영향: 실험적 연구

Effect of Confining Pressure, Temperature, and Porosity on Permeability of Daejeon Granite: Experimental Study

  • 이동길 (서울대학교 에너지시스템공학부) ;
  • 전석원 (서울대학교 에너지시스템공학부)
  • Donggil Lee (Department of Energy Systems Engineering, Seoul National University) ;
  • Seokwon Jeon (Department of Energy Systems Engineering, Seoul National University)
  • 투고 : 2024.02.13
  • 심사 : 2024.02.23
  • 발행 : 2024.02.29

초록

고준위방사성폐기물 심층처분 시, 처분공 주변의 근계암반은 높은 지중응력과 재포화된 벤토나이트 완충재의 팽윤압, 방사성 원소 붕괴열의 영향을 받아 국부적으로 투수계수가 변화될 수 있다. 본 연구에서는 국내 유력한 처분 대상 부지 암종 중의 하나인 결정질 경암으로서의 화강암을 대상으로, 실제 처분 환경에서 예상되는 다양한 구속압과 온도 조건을 적용하여 투수계수 변화 특성을 실험적인 방법을 통하여 고찰하고자 하였다. KURT 화강암 시험편 하나당 3개 이상의 정수압 조건에서 투수시험을 수행하여 구속압이 증가함에 따라 투수계수가 지수적으로 감소하는 관계를 도출하였다. 예상 최대 온도로 설정한 90℃ 이하 수준에서는 온도에 의한 투수계수 변화가 무시 가능할 정도로 작음을 확인하였다. 추가로 초기투수계수가 초기공극률의 거듭제곱에 비례하는 상관관계를 도출함으로써, 특정 공극률을 지닌 화강암이 일정 구속압 하에 있을 때 가지는 투수계수 값을 유추할 수 있었다.

In deep geological disposal of high-level radioactive waste, the surrounding rock at the immediate vicinity of the deposition hole may experience localized changes in permeability due to in-situ stress at depth, swelling pressure from resaturated bentonite buffer, and the heat generated from the decay of radioactive isotopes. In this study, experimental data on changes in permeability of granite, a promising candidate rock type in South Korea, were obtained by applying various confining pressures and temperature conditions expected in the actual disposal environment. By conducting the permeability test on KURT granite specimens under three or more hydrostatic pressure conditions, the relation in which the permeability decreases exponentially as the confining pressure increases was derived. The temperature-induced changes in permeability were found to be negligible at temperatures below the expected maximum of 90℃. In addition, by establishing a relation in which the initial permeability is proportional to the power of the initial porosity, it was possible to estimate permeability value for granite with a specific porosity under a certain confining pressure.

키워드

과제정보

이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원을 받아 수행된 연구사업임(2021M2E1A1085196).

참고문헌

  1. Adler, P., Jacquin, C.G., and Quiblier, J., 1990, Flow in simulated porous media, International Journal of Multiphase Flow, 16(4), 691-712. https://doi.org/10.1016/0301-9322(90)90025-E
  2. Bernabe, Y., 1986, The effective pressure law for permeability in Chelmsford granite and Barre granite, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23(3), 267-275. https://doi.org/10.1016/0148-9062(86)90972-1
  3. Bernabe, Y., Mok, U., and Evans, B., 2003, Permeability-porosity relationships in rocks subjected to various evolution processes, Pure and Applied Geophysics, 160, 937-960. https://doi.org/10.1007/PL00012574
  4. Brace, W. and Martin Iii, R., 1968, A test of the law of effective stress for crystalline rocks of low porosity, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 5(5), 415-426. https://doi.org/10.1016/0148-9062(68)90045-4
  5. Chaki, S., Takarli, M., and Agbodjan, W., 2008, Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions, Construction and Building Materials, 22(7), 1456-1461. https://doi.org/10.1016/j.conbuildmat.2007.04.002
  6. Chen, S., Yang, C., and Wang, G., 2017, Evolution of thermal damage and permeability of Beishan granite, Applied Thermal Engineering, 110, 1533-1542. https://doi.org/10.1016/j.applthermaleng.2016.09.075
  7. Cho, W.J., Kim, J.S., and Kim, G.Y., 2019, Effects of excavation damaged zone on thermal analysis of multi-layer geological repository, Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), 17(1), 75-94. https://doi.org/10.7733/jnfcwt.2019.17.1.75
  8. Cho, W.J., Kim, J.S., Lee, C., and Choi, H.J., 2013, Gas permeability in the excavation damaged zone at KURT, Engineering Geology, 164, 222-229. https://doi.org/10.1016/j.enggeo.2013.07.010
  9. David, C., Wong, T.F., Zhu, W., and Zhang, J., 1994, Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust, Pure and Applied Geophysics, 143, 425-456. https://doi.org/10.1007/BF00874337
  10. Deng, S.Y., Jiang, Q.H., Shang, K.W., Jing, X.Y., and Xiong, F., 2021, Effect of high temperature on micro-structure and permeability of granite, Rock and Soil Mechanics, 42(6), 6.
  11. Evans, J.P., Forster, C.B., and Goddard, J.V., 1997, Permeability of fault-related rocks, and implications for hydraulic structure of fault zones, Journal of Structural Geology, 19(11), 1393-1404. https://doi.org/10.1016/S0191-8141(97)00057-6
  12. Gao, H., Lan, Y., and Guo, N., 2021, Pore Structural Features of Granite under Different Temperatures, Materials, 14(21), 6470.
  13. Ghanbarian, B. and Male, F., 2021, Theoretical power-law relationship between permeability and formation factor, Journal of Petroleum Science and Engineering, 198, 108249.
  14. He, L., Yin, Q., and Jing, H., 2018, Laboratory investigation of granite permeability after high-temperature exposure, Processes, 6(4), 36.
  15. IAEA, 1981, The Annual Report for 1981, 39-40.
  16. Jiang, G., Zuo, J., Li, L., Ma, T., and Wei, X., 2018, The evolution of cracks in Maluanshan granite subjected to different temperature processing, Rock Mechanics and Rock Engineering, 51, 1683-1695. https://doi.org/10.1007/s00603-018-1403-7
  17. Kang, F., Jia, T., Li, Y., Deng, J., and Huang, X., 2021, Experimental study on the physical and mechanical variations of hot granite under different cooling treatments, Renewable Energy, 179, 1316-1328. https://doi.org/10.1016/j.renene.2021.07.132
  18. Kim, G.Y., Kim, S.J., Koh, Y.K., and Bae, D.S., 2004, Mineralogical Characteristics and Genesis of Phlogopite in the Talc Deposits of the Chungnam Area, Korea, Journal of Mineralogical Society of Korea, 17(3).
  19. Kim, S.K., Kang, C.H., Lee, Y.M., and Hwang, Y.S., 2001, Performance Assessment for Radionuclides Transport from HLW Repository, Proceedings of the Korean Society of Soil and Groundwater Environment Conference, 41-46.
  20. Kranz, R., Frankel, A., Engelder, T., and Scholz, C., 1979, The permeability of whole and jointed Barre granite, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(4), 225-234. https://doi.org/10.1016/0148-9062(79)91197-5
  21. KSRM, 2006, Standard test method for porosity and density of rock, Tunnel & Underground Space, 16, 95-98.
  22. Lee, C., Lee, J., Park, S., Kwon, S., Cho, W.J., and Kim, G.Y., 2020, Numerical analysis of coupled thermo-hydro-mechanical behavior in single-and multi-layer repository concepts for high-level radioactive waste disposal, Tunnelling and Underground Space Technology, 103, 103452.
  23. Lee, C., Yoon, S., Cho, W.J., Jo, Y., Lee, S., Jeon, S., and Kim, G.Y., 2019, Study on thermal, hydraulic, and mechanical properties of KURT granite and Gyeongju bentonite, Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), 17, 65-80. https://doi.org/10.7733/jnfcwt.2019.17.S.65
  24. Lee, K.S., Kim, J.S., Choi, H.J., and Lee, C.S., 2012, Quantitative Damage Assessment in KURT Granite by Acoustic Emission, KSCE Journal of Civil and Environmental Engineering Research, 32(6C), 305-314. https://doi.org/10.12652/Ksce.2012.32.6C.305
  25. Li, N., Ma, X., Zhang, S., Zou, Y., Wu, S., Li, S., Zhang, Z., and Cao, T., 2020, Thermal effects on the physical and mechanical properties and fracture initiation of Laizhou granite during hydraulic fracturing, Rock Mechanics and Rock Engineering, 53, 2539-2556. https://doi.org/10.1007/s00603-020-02082-7
  26. Liedtke, L., 2005, Spread of contaminants in excavation disturbed zone based on results of hydraulic in-situ tests in jointed rock, Impact of excavation disturbed or damaged zone (EDZ) on the performance of radioactive waste geological repositories, 157-162.
  27. Martino, J.B. and Chandler, N.A., 2004, Excavation-induced damage studies at the underground research laboratory, International Journal of Rock Mechanics and Mining Sciences, 41(8), 1413-1426. https://doi.org/10.1016/j.ijrmms.2004.09.010
  28. MTS Systems Corporation, 2004, Rock and Concrete Mechanics Testing Systems, 240-243.
  29. MTS Systems Corporation, 2007, Model 286.31 Transient Permeability Pore Pressure Intensifier Product Information, 5-9.
  30. Nelson, P.H., 2005, Permeability, porosity, and pore-throat size? A three-dimensional perspective, Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 46(06).
  31. Park, S., Kim, J.S., Kim, G.Y., and Kwon, S., 2019, Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository, Journal of Korean Tunnelling and Underground Space Association, 21(4), 501-518. https://doi.org/10.9711/KTAJ.2019.21.4.501
  32. Pusch, R. and Stanfors, R. 1992, The zone of disturbance around blasted tunnels at depth, In InternationaL Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 29(5), 447-456. https://doi.org/10.1016/0148-9062(92)92629-Q
  33. Saar, M.O. and Manga, M., 1999, Permeability-porosity relationship in vesicular basalts, Geophysical Research Letters, 26(1), 111-114. https://doi.org/10.1029/1998GL900256
  34. Sabet, B., Shao, H., Autio, J., Elorza, F.J., Canamon, I., and Perez, J.C., 2005, EDZ assessment in the Febex II Project, Impact of Excavation Disturbed or Damaged Zone (Edz) on the Performance of Radioactive Waste Geological Repositories, 137-142.
  35. Schon, J.H., 2015, Physical Properties of Rocks: Fundamentals of Principles of Petrophysics (2nd ed.), Elsevier, 44-48.
  36. Sugihara, K., 2008, Geological disposal of high-level radioactive waste and the role of rock engineering, International Journal of the JCRM, 5(1), 19-24.
  37. Sun, Q., Zhang, W., Zhu, Y., and Huang, Z., 2019, Effect of high temperatures on the thermal properties of granite, Rock Mechanics and Rock Engineering, 52, 2691-2699. https://doi.org/10.1007/s00603-019-1733-0
  38. Tian, W.L., Yang, S.Q., Elsworth, D., Wang, J.G., and Li, X.Z., 2020, Permeability evolution and crack characteristics in granite under treatment at high temperature, International Journal of Rock Mechanics and Mining Sciences, 134, 104461.
  39. Tsang, C.F., Bernier, F., and Davies, C., 2005, Geohydromechanical processes in the Excavation Damaged Zone in crystalline rock, rock salt, and indurated and plastic clays-in the context of radioactive waste disposal, International Journal of Rock Mechanics and Mining Sciences, 42(1), 109-125. https://doi.org/10.1016/j.ijrmms.2004.08.003
  40. Um, J.G., Woo, I., and Park, H.J., 2009, Variation of engineering geological characteristics of Jurassic granite in Wonju due to Freeze-Thaw weathering, Economic and Environmental Geology, 42(3), 261-272.
  41. Yang, S.Q., Tian, W.L., Elsworth, D., Wang, J.G., and Fan, L.F., 2020, An experimental study of effect of high temperature on the permeability evolution and failure response of granite under triaxial compression, Rock Mechanics and Rock Engineering, 53, 4403-4427. https://doi.org/10.1007/s00603-019-01982-7
  42. Yu, W., Bao-lin, L., Hai-yan, Z., Chuan-liang, Y., Zhi-jun, L., and Zhi-qiao, W., 2014, Thermophysical and mechanical properties of granite and its effects on borehole stability in high temperature and three-dimensional stress, The Scientific World Journal, 2014.