DOI QR코드

DOI QR Code

Analysis of the Reduction Effect of Combined Treatment with UV-C and Organic Acid to Reduce Aspergillus ochraceus and Rhodotorula mucilaginosa Contamination

Aspergillus ochraceus와 Rhodotorula mucilaginosa 저감을 위한 자외선과 유기산 복합처리 효과 분석

  • Eun-Seon Lee (Division of Animal Products Research and Development, National Institute of Animal Science) ;
  • Jong-Hui Kim (Division of Animal Products Research and Development, National Institute of Animal Science) ;
  • Bu-Min Kim (Division of Animal Products Research and Development, National Institute of Animal Science) ;
  • Mi-Hwa Oh (Division of Animal Products Research and Development, National Institute of Animal Science)
  • 이은선 (농촌진흥청 국립축산과학원 축산물이용과) ;
  • 김종희 (농촌진흥청 국립축산과학원 축산물이용과) ;
  • 김부민 (농촌진흥청 국립축산과학원 축산물이용과) ;
  • 오미화 (농촌진흥청 국립축산과학원 축산물이용과)
  • Received : 2023.10.16
  • Accepted : 2024.01.08
  • Published : 2024.02.28

Abstract

This study investigated the effectiveness of using pathogens and aqueous acids to reduce the Aspergillus ochraceus and Rhodotorula mucilaginosa contamination in livestock production environments. For this study, 1 mL of each bacterial suspension (107-108 spores/mL) was inoculated on a knife surface, dried at 37℃, and used under each treatment condition. First, to investigate the effect of organic acids, acetic, lactic, and citric acids were used. Subsequently, to select the appropriate concentration, they were prepared at concentrations of 0.5, 1, 2, 3, 4, and 5%, respectively. Accordingly, to further maximize the effect of organic acid treatment, we combined the treatment with ultraviolet light. The two strains showed a significant difference (P<0.05) compared to the initial strain, with a greater than 90% decrease in the concentrations of all organic acids. Consequently, acetic and lactic acids decreased by approximately 5 and 2 log colony forming unit (CFU)/cm2, respectively, when treated with ultraviolet light (360 mJ/cm2); however, citric acid decreased by less than 1 log CFU/cm2. However, when manufactured with 4% acetic acid, a severe malodor was emitted, making it difficult for workers to use it in a production environment. Accordingly, the optimal treatment conditions for organic acid and ultraviolet light for application were selected as follows: immersion in a 4% lactic acid solution for 1 minute and then, sterilization with ultraviolet light at 360 mJ/cm2. Finally, when a pork meat sample was cut with a knife that was finally washed with lactic acid and treated with ultraviolet light, the low level of inoculum transferred from the cleaned knife to the surface of the sample was not detected. In conclusion, using this established method can prevent cross-contamination of the surface of the meat during processing.

본 연구는 축산물 생산 환경에서 오염 가능한 Aspergillus ochraceus와 Rhodotorula mucilaginosa를 저감하기 위하여 자외선과 유기산을 활용하여 그 효과를 구명하였다. 이를 위하여 각각의 균 현탁액(107-108 spores/mL)을 칼 표면에 1 mL 접종하고 37℃에 건조한 후 각각의 처리 조건에 활용하였다. 먼저 유기산 효과를 구명하기 위하여 아세트산, 젖산, 구연산을 활용하였으며 적정 농도 선정을 위하여 0.5, 1, 2, 3, 4, 5%의 농도로 제조하였다. 그 결과 아세트산의 경우 약 5 log, 젖산은 최대 2 log CFU/cm2 감소하였으나, 구연산의 경우 1 log 이하로 미미한 수준이었다. 이에 따라 유기산 처리 효과를 더욱 극대화하기 위해 자외선과의 복합처리를 진행하고자 하였다. 두 균주는 모든 유기산에서 90% 이상 감소하여 초기 균주와 비교하였을 때 유의적인 차이(P<0.05)를 보였으며 특히 4%의 젖산은 자외선(360 mJ/cm2)과 함께 처리하였을 때, 2 log CFU/cm2이상 감소하였으며 같은 조건에서 아세트산은 5 log CFU/cm2이상의 저감능을 보였다. 그러나 본 연구에서 사용한 4% 농도의 아세트산으로 제조할 경우 이취가 매우 심하여 작업자가 생산환경에서 사용하기에 어려움이 있다. 이에 따라서 현장에 적용하기 위한 유기산과 자외선 최적 처리 조건은 4% 젖산 용액에 1분간 침지한 후 자외선을 20분 가량(360 mJ/cm2) 살균 처리하는 방법으로 선정하였다. 최종적으로 유기산 세척 및 자외선 처리가 된 칼로 돼지고기 절단 작업을 수행하였을 때, 현장 오염 수준의 진균류 농도에서 작업 후 돼지고기 표면으로 이행되는 오염량은 모두 불검출 되었다. 본 연구를 통하여 실험실 규모뿐만 아니라 최종적으로 현장에서 살균된 도구를 활용하여 작업 시 고기 표면까지 이행되는 교차오염을 방지할 수 있는 것으로 사료된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(세부과제명: 축산물 생산단계 유해 진균류의 물리적 제어기술 개발, 세부과제번호: PJ01423801)에 의해 이루어진 결과이며 지원에 감사드립니다.

References

  1. Bakhtiary, F., Sayevand, H.R., Remely, M., Hippe, B., Hosseini, H., Haslberger, A.G., Evaluation of bacterial contamination sources in meat production line. J. Food Qual., 39, 750-756 (2016). https://doi.org/10.1111/jfq.12243
  2. Nkosi, D.V., Bekker, J.L., Hoffman, L.C., The use of organic acids (lactic and acetic) as a microbial decontaminant during the slaughter of meat animal species: A review. Foods, 10, 2293 (2021).
  3. Coban, H.B., Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng., 43, 569-591 (2020). https://doi.org/10.1007/s00449-019-02256-w
  4. Ministry of Food and Drug Safety (MFDS), (2023, July 9). Korean food code. Retreived from https://www.mfds.go.kr/brd/m_99/down.do?brd_id=ntc0021&seq=46529&data_tp=A&file_seq=2
  5. Ministry of Food and Drug Safety (MFDS), (2024, January 3). Korean food code. Retreived from https//www.mfds.go.kr/brd/m_99/view.do?seq=46529&srchFr=&srchTo=&srchWord=%EC%9D%B4%EB%AC%BC&srchTp=1&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&Data_stts_gubun=C9999&page=1
  6. Nasser, L.A., Molecular identification of isolated fungi, microbial and heavy metal contamination of canned meat products sold in Riyadh, Saudi Arabia. Saudi J. Biol. Sci., 22, 513-520 (2015). https://doi.org/10.1016/j.sjbs.2014.08.003
  7. Iacumin, L., Milesi, S., Pirani, S., Comi, G., Chiesa, L.M., Ochratoxigenic mold and ochratoxin A in fermented sausages from different areas in northern Italy: Occurrence, reduction or prevention with ozonated air. J. Food Saf., 31, 538-545 (2011). https://doi.org/10.1111/j.1745-4565.2011.00332.x
  8. Wang, Y., Guan, Y., Lin, W., Yan, H., Neng, J., Sun, P., Quantitative proteomic profiling of fungal growth, development, and ochratoxin A production in Aspergillus ochraceus on high-and low-NaCl cultures. Toxins, 13, 51 (2021).
  9. Perrone, G., Rodriguez, A., Magista, D., Magan, N., Insights into existing and future fungal and mycotoxin contamination of cured meats. Curr. Opin. Food Sci., 29, 20-27 (2019). https://doi.org/10.1016/j.cofs.2019.06.012
  10. Iacumin, L., Manzano, M., Comi, G., Prevention of Aspergillus ochraceus growth on and ochratoxin A contamination of sausages using ozonated air. Food Microbiol., 29, 229-232 (2012). https://doi.org/10.1016/j.fm.2011.06.018
  11. Algammal, A.M., Elsayed, M.E., Hashem, H.R., Ramadan, H., Sheraba, N.S., El-Diasty, E.M., Abbas, S.M., Hetta, H.F., Molecular and HPLC-based approaches for detection of aflatoxin B1 and ochratoxin A released from toxigenic Aspergillus species in processed meat. BMC Microbiol., 21, 1-10 (2021). https://doi.org/10.1186/s12866-020-02060-7
  12. Odeyemi, O.A., Alegbeleye, O.O., Strateva, M., Stratev, D., Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf., 19, 311-331 (2020). https://doi.org/10.1111/1541-4337.12526
  13. Nielsen, D.S., Jacobsen, T., Jespersen, L., Koch, A.G., Arneborg, N., Occurrence and growth of yeasts in processed meat products-Implications for potential spoilage. Meat Sci., 80, 919-926 (2008). https://doi.org/10.1016/j.meatsci.2008.04.011
  14. Bai, Y., Ding, X., Zhao, Q., Sun, H., Li, T., Li, Z., Wang, H., Zhang, L., Zhang, C., Xu, S., Development of an organic acid compound disinfectant to control food-borne pathogens and its application in chicken slaughterhouses. Poult. Sci., 101, 101842. (2022).
  15. Mani-Lopez, E., Garcia, H.S., Lopez-Malo, A., Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int., 45, 713-721 (2012). https://doi.org/10.1016/j.foodres.2011.04.043
  16. Ministry of Food and Drug Safety (MFDS), (2023, August 10). Korean food code. Retreived from https://various.foodsafetykorea.go.kr/fsd/#/ext/Document/FA
  17. Xu, X., Lee, J.E., Kim, E.J., Jeong, S.M., Ryu, S.H., Kang, W.S., Kim, S.R., Kim, H.H., Lee, G.H., Ahn, D.H., Effect of organic acid and ultraviolet-C treatment on putrefactive microorganisms and shelf-life of seasoned squid product. Korean J. Food Preserv., 28, 578-588 (2021). https://doi.org/10.11002/kjfp.2021.28.5.578
  18. Silano, V., Barat Baviera, J.M., Bolognesi, C., Bruschweiler, B.J., Chesson, A., Cocconcelli, P.S., Crebelli, R., Gott, D.M., Grob, K., Lampi, E., Riviere, G., Steffensen, I.L., Tlustos, C., Loveren, H.V., Vernis, L., Zorn, H., Bolton, D., Bover-Cid, S., Knecht, J.D., Peixe, L, Skandamis, P., Bau, A., Martino, C., Messens, W., Sarno, E., Tomcikova, D., Mortensen, A., Evaluation of the safety and efficacy of the organic acids lactic and acetic acids to reduce microbiological surface contamination on pork carcasses and pork cuts. EFSA J., 16, e05482 (2018).
  19. Rosario, D.K., Mutz, Y.S., Castro, V.S., Bernardes, P.C., Rajkovic, A., Conte-Junior, C.A., Optimization of UV-C light and lactic acid combined treatment in decontamination of sliced Brazilian dry-cured loin: Salmonella Typhimurium inactivation and physicochemical quality. Meat Sci., 172, 108308 (2021).
  20. Seong, K.H., Kang, J.H., Song, K.B., Effects of combined acetic acid and UV-C irradiation treatment on the microbial growth and the quality of sedum during its storage. Korean J. Food Preserv., 21, 581-586 (2014). https://doi.org/10.11002/kjfp.2014.21.4.581