DOI QR코드

DOI QR Code

Immunomodulatory Effect of Eleutherococcus Senticosus Stem Extract by Cultivars in RAW 264.7 Macrophage Cells

RAW 264.7 대식세포에서 산지별 가시오가피 줄기 추출물의 면역 증강 효과

  • Received : 2023.11.28
  • Accepted : 2023.12.29
  • Published : 2024.02.28

Abstract

Global interest in natural functional materials to strengthen human immunity is increasing due to the increase in immune-related diseases associated with COVID-19 and the aging population. In this study, we determined the potential therapeutic effect of Eleutherococcus senticosus stems on immune enhancement according to the cultivation region. The contents of eleutheroside B and E, which are chemical components of E. senticosus stems, were analyzed. We showed that the eleutheroside B content of E. senticosus stems in different cultivation regions ranged from 2.96±0.11 to 6.24±0.05 mg/g and from 1.11±0.05 to 2.11±0.03 mg/g in 70% ethanol and hot water extracts, respectively. The eleutheroside E content ranged from 4.93±0.20 to 10.79±0.03 mg/g and 1.75±0.14 to 3.64±0.05 mg/g in 70% ethanol and hot water extracts, respectively. In addition, the immunomodulatory effect of E. senticosus stems was evaluated using RAW 264.7 macrophages. The 70% ethanol extract of E. senticosus stems showed no cytotoxicity up to 200 ㎍/mL, and the hot water extract showed no cytotoxicity up to 500 ㎍/mL. Additionally, the E. senticosus stem extract significantly increased the production of nitric oxide and cytokines (TNF-α, IL-6, and IL-1β) compared to their production in the control group. These results suggest that E. senticosus stem extracts are a potential functional food material and ingredient to enhance the immune response.

본 연구는 국내산 가시오가피의 건강기능식품 소재로서의 가능성을 확인하기 위해 산지별 채취한 가시오가피의 유효물질 함량 및 면역 증강 효과을 평가하였다. 태백, 철원, 삼척, 강원도 농업기술원에서 수확한 가시오가피의 지표성분인 eleutheroside B 및 eleutheroside E의 분석을 수행하였으며, 면역 증강에 대한 효과를 관찰하기 위하여 MTT 세포독성 평가, NO 생성량과 cytokine 생성량을 측정하였다. 지표성분 eleutheroside B의 함량은 채취 지역별로 70% 에탄올 추출물에서는 2.96±0.11-6.24±0.05 mg/g로 태백에서 가장 높은 함량을 나타냈으며, 열수 추출물에서는 1.11±0.05-2.11±0.03 mg/g로 태백에서 가장 높은 함량을 나타냈다. Eleutheroside E 함량은 채취 지역별로 70% 에탄올 추출물에서는 4.93±0.20-10.79±0.03 mg/g을 나타냈으며 철원에서 가장 높은 함량을 나타냈고, 열수 추출물에서는 1.75±0.14-3.64±0.05 mg/g로 철원과 농업기술원에서 가장 높은 함량을 나타냈다. 또한, eleutheroside B 및 E 함량은 열수 추출물보다 70% 에탄올 추출물에서 더 높은 함량을 나타냈다. 채취 지역별 가시오가피의 70% 에탄올 추출물은 50-200 ㎍/mL 농도에서, 열수 추출물은 100-500 ㎍/mL 농도에서 RAW 264.7 대식세포에 대한 세포독성을 나타내지 않았으며, 대식세포의 활성화로 방출되는 NO 성성량을 측정한 결과, 가시오가피 줄기 추출물에서 NO 생성량이 증가하는 것을 확인하였으며, TNF-α, IL-6, IL-1β을 포함하는 cytokine의 방출을 측정한 결과 유의적인 증가를 나타냈다. 따라서 가시오가피 줄기는 면역 관련 질환의 개선을 위한 건강기능식품 소재로 활용 가능할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 2022년 농촌진흥청 지원과제(RS-2022-RD010345)에 의해 수행되었으며, 이에 감사드립니다.

References

  1. Rothan, H.A., Byrareddy, S.N., The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 109, 102433 (2020). 
  2. Campos, C., Pera, A., Lopez-Fernandez, I., Alonso, C., Tarazona, R., Solana, R., Proinflammatory status influences NK cells subsets in the elderly. Immunol. Lett., 162, 298-302 (2014).  https://doi.org/10.1016/j.imlet.2014.06.015
  3. Hwang, K.A., Functional food for immune regulation focusing on Korean native materials. Food Ind. Nutr., 25, 11-18 (2020). 
  4. Garcia, L.F., Immune response, inflammation, and the clinical spectrum of COVID-19. Front. Immunol., 11, 1441 (2020). 
  5. Sindhu, R.K., Goyal, A., Das, J., Neha, Choden, S., Kumar, P., Immunomodulatory potential of polysaccharides derived from plants and microbes: A narrative review. Carbohydr. Polym. Technol. Appl., 2, 100044 (2021). 
  6. Hogquist, K.A., Baldwin, T.A., Jameson, S.C., Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol., 5, 772-782 (2005).  https://doi.org/10.1038/nri1707
  7. Lamkanfi, M., Dixit, V.M., Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol., 28, 137-161 (2012).  https://doi.org/10.1146/annurev-cellbio-101011-155745
  8. Vance, R.E., Isberg, R.R., Portnoy, D.A., Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe, 6, 10-21 (2009).  https://doi.org/10.1016/j.chom.2009.06.007
  9. Medzhitov, R., Janeway Jr, C., Innate immunity. N. Engl. J. Med., 343, 338-344 (2000).  https://doi.org/10.1056/NEJM200008033430506
  10. Solana, R., Pawelec, G., Tarazona, R., Aging and innate immunity. Immunity, 24, 491-494 (2006).  https://doi.org/10.1016/j.immuni.2006.05.003
  11. Mantovani, A., Sica, A., Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol., 22, 231-237 (2010).  https://doi.org/10.1016/j.coi.2010.01.009
  12. Kelly, B., O'neill, L.A., Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res., 25, 771-784 (2015).  https://doi.org/10.1038/cr.2015.68
  13. Kim, S., Kim, K.Y., Park, M.S., Choi, S.Y., Yun, S.J., Intraspecific relationship of Eleutherococcus senticosus Max. by RAPD markers. Korean J. Medicinal Crop Sci., 6 , 165-169 (1998). 
  14. Lim, S.Y., Leem, J.Y., Lee, C.S., Jang, Y.J., Park, J.W., Yoon, S., Antioxidant and cell proliferation effects of Acanthopanax senticosus for extract in human osteoblast-like MG-63 cell line. Korean J. Food Sci. Technol., 39, 694-700 (2007). 
  15. Kim, J.K., Kim, S.W., Ko, S.Y., Kim, S.N., Kwon, J.S., Hwang, H.H., The effect of combined Rehmannia glutinosa Libosch and Eleutherococcus senticosus Max (OPB) extracts on bone mineral density in ovariectomized rats. Int. J. Oral Biol., 32, 143-151 (2007). 
  16. Park, K.J., Park, S.H., Kim, J.K., Anti-wrinkle activity of Acanthopanax senticosus extract in ultraviolet B (UVB)-induced photoaging. J. Korean Soc. Food Sci. Nutr., 39, 42-46 (2010).  https://doi.org/10.3746/jkfn.2010.39.1.042
  17. Hwang, J.H., Kim. S.M., Hwang. G.S., Jeon. C.Y., Kang. K.S., Effect of extract of Acanthopanax senticosus fruit on breast cancer cells. J. Int. Korean Med., 43, 529-541 (2022).  https://doi.org/10.22246/jikm.2022.43.4.529
  18. Lee, K.K., Choi, D.Y., Kang, S.K., The effect of AS aqua-acupuncture on the diabetic rats induced by Streptozotocin. J. Acupunct. Res., 19, 1-13 (2002). 
  19. Kwon, H.O., Lee, M., Kim, Y.J., Kim, E., Kim, O.K., Beneficial effects of Acanthopanax senticosus extract in type II diabetes animal model via down-regulation of advanced glycated hemoglobin and glycosylation end products. J. Korean Soc. Food Sci. Nutr., 45, 929-937 (2016).  https://doi.org/10.3746/jkfn.2016.45.7.929
  20. Awang, D.V., Siberian ginseng toxicity may be case of mistaken identity. CMAJ, 155, 1237 (1996). 
  21. Takasugi, N., Effect of Eleutherococcus senticosus and its components on rectal temperature, body and grip tones, motor coordination, and exploratory and spontaneous movements in acute stressed mice. Japanese J. Pharmacogn., 39, 232-237 (1985). 
  22. Shin, K.H., Lee, S.H., The chemistry of secondary products from Acanthopanax species and their pharmacological activities. Nat. Prod. Sci., 8, 111-126 (2002). 
  23. Kim, Y.H., Bae, D.B., Lee, J.S., Park, S.O., Lee, S.J., Cho, O.H., Lee, O.H., Determination of eleutherosides and β-glucan content from different parts and cultivating areas of A. senticosus and A. koreanum. J. Korean Soc. Food Sci. Nutr., 42, 2082-2087 (2013).  https://doi.org/10.3746/jkfn.2013.42.12.2082
  24. Choi, Y.H., Kim, J.W., (Quantitative analysis of eleutherosides B and E using HPLC-ESI/MS. Korean J. Pharmacogn., 33, 88-91 (2002). 
  25. Lee, S.H., Kang, S.S., Cho, S.H., Ryu, S.N., Lee, B.J., Determination of eleutherosides B and E in various parts of Acanthopanax species. Korean J. Pharmacogn., 36, 70-74 (2005). 
  26. Park, H.R., Park, E., Rim, A.R., Jeon, K.I., Hwang, J.H., Lee, S.C., Antioxidant activity of extracts from Acanthopanax senticosus. African J. Biotechnol., 5, 2388-2396 (2006). 
  27. Yang, X., Liu, T., Qi, S., Gu, H., Li, J., Yang, L., Tea saponin additive to extract eleutheroside B and E from Eleutherococcus senticosus by ultrasonic mediation and its application in a semi-pilot scale. Ultrason. Sonochem., 86, 106039 (2022). 
  28. Wolfender, J.L., HPLC in natural product analysis: the detection issue. Planta med., 75, 719-734 (2009).  https://doi.org/10.1055/s-0028-1088393
  29. Larsen, T.O., Hansen, M.A., Dereplication and discovery of natural products by UV spectroscopy, 2nd ed, CRC Press, Boca Raton, FL, USA, 235-258 (2007). 
  30. Schaper, F., Rose-John, S., Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev., 26, 475-487 (2015).  https://doi.org/10.1016/j.cytogfr.2015.07.004
  31. Cho, J.H., Choi, G.H., Park, I.J., Baik, S.O., Kim, H.H., Kim, C.S., Development of functional food materials from Acanthopanax senticosus-fermented mushroom mycelia. J. Korean Soc. Food Sci. Nutr., 43, 411-418 (2014).  https://doi.org/10.3746/jkfn.2014.43.3.411
  32. Cho, B.O., Che, D.N., Kim, J.S., Kim, J.H., Shin, J.Y., Kang, H.J., Jang, S.I., In vitro anti-inflammatory and anti-oxidative stress activities of kushenol C isolated from the roots of Sophora flavescens. Molecules, 25, 1768 (2020). 
  33. Han, N.R., Kim, K.C., Kim, J.S., Park, H.J., Ko, S.G., Moon, P.D., SBT (composed of panax ginseng and aconitum carmichaeli) and stigmasterol enhances nitric oxide production and exerts curative properties as a potential anti-oxidant and immunity-enhancing agent. Antioxidants, 11, 199 (2022). 
  34. Chow, S.K.H., Cui, C., Cheng, K.Y.K., Chim, Y.N., Wang, J., Wong, C.H.W., Ng, K.W., Wong, R.M.Y., Cheung, W.H., Acute inflammatory response in osteoporotic fracture healing augmented with mechanical stimulation is regulated in vivo through the p38-MAPK pathway. Int. J. Mol. Sci., 22, 8720 (2021). 
  35. Guo, S., Wei, H., Li, J., Fan, R., Xu, M., Chen, X., Wang, Z., Geographical distribution and environmental correlates of eleutherosides and isofraxidin in Eleutherococcus senticosus from natural populations in forests at Northeast China. Forests, 10, 872 (2019). 
  36. Jwa, C.S., Yang, Y.T., Koh, J.S., Preparation of extract from Acanthopanax koreanum by extraction conditions and its chemical compositions. Appl. Biol. Chem., 44, 24-29 (2001). 
  37. Lim, J.H., Yang, Y.T., Ko, J.S. Extraction of major constituents from Acanthopanax koreanum stems with water and ethanol solutions. Korean J. Food Preserv., 14, 67-72 (2007). 
  38. Sieweke, M.H., Allen, J.E., Beyond stem cells: self-renewal of differentiated macrophages. Sci., 342, 1242974 (2013). 
  39. Tripathi, P., Tripathi, P., Kashyap, L., Singh, V., The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol., 51, 443-452 (2007).  https://doi.org/10.1111/j.1574-695X.2007.00329.x
  40. Beutler, B.A., The role of tumor necrosis factor in health and disease. J. Rheumatol. Suppl., 57, 16-21 (1999). 
  41. Carswell, E.A., Old, L.J., Kassel, R.L., Green, S., Fiore, N., Williamson, B., An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA, 72, 3666-3670 (1975).  https://doi.org/10.1073/pnas.72.9.3666
  42. Nishimoto, N., Kishimoto, T., Inhibition of IL-6 for the treatment of inflammatory diseases. Curr. Opin. pharmacol.,, 4, 386-391 (2004).  https://doi.org/10.1016/j.coph.2004.03.005
  43. Ben-Sasson, S.Z., Hu-Li, J., Quiel, J., Cauchetaux, S., Ratner, M., Shapira, I., Dinarello, C.A., Paul, W.E., IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl. Acad. Sci. USA, 106, 7119-7124 (2009).  https://doi.org/10.1073/pnas.0902745106
  44. Enke, C.G., Nagels, L.J., Undetected components in natural mixtures: how many? What concentrations? Do they account for chemical noise? What is needed to detect them? Anal. Chem., 83, 2539-2546 (2011).  https://doi.org/10.1021/ac102818a
  45. Ulrich-Merzenich, G., Panek, D., Zeitler, H., Vetter, H., Wagner, H., Drug development from natural products: exploiting synergistic effects. Indian J. Exp. Biol., 48, 208-219 (2010).