DOI QR코드

DOI QR Code

The pharmacological role of Ginsenoside Rg3 in liver diseases: A review on molecular mechanisms

  • Wenhong Wang (Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport) ;
  • Ke Li (Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport) ;
  • Weihua Xiao (Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport)
  • Received : 2023.05.22
  • Accepted : 2023.11.10
  • Published : 2024.03.01

Abstract

Liver diseases are a significant global health burden and are among the most common diseases. Ginssennoside Rg3 (Rg3), which is one of the most abundant ginsenosides, has been found to have significant preventive and therapeutic effects against various types of diseases with minimal side effects. Numerous studies have demonstrated the significant preventive and therapeutic effects of Rg3 on various liver diseases such as viral hepatitis, acute liver injury, nonalcoholic liver diseases (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). The underlying molecular mechanism behind these effects is attributed to apoptosis, autophagy, antioxidant, anti-inflammatory activities, and the regulation of multiple signaling pathways. This review provides a comprehensive description of the potential molecular mechanisms of Rg3 in the development of liver diseases. The article focuses on the regulation of apoptosis, oxidative stress, autophagy, inflammation, and other related factors. Additionally, the review discusses combination therapy and liver targeting strategy, which can accelerate the translation of Rg3 from bench to bedside. Overall, this article serves as a valuable reference for researchers and clinicians alike.

Keywords

Acknowledgement

This study was sponsored by the Shanghai Science and Technology Plan Project (23010504200); the "Shuguang Program" (20SG50) funded by Shanghai Education Development Foundation and Shanghai Municipale Education Commission; the Shanghai Talent Development Fund (2020125); the Key Lab of Exercise and Health Sciences of Ministry of Education (Shanghai University of Sport) (2022KF001); and the Shanghai Key Lab of Human Performance (Shanghai University of Sport) (NO. 11DZ2261100).

References

  1. Xiao J, Wang F, Wong NK, He J, Zhang R, Sun R, Xu Y, Liu Y, Li W, Koike K, et al. Global liver disease burdens and research trends: analysis from a Chinese perspective. J Hepatol 2019;71(1):212-21. https://doi.org/10.1016/j.jhep.2019.03.004
  2. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of nonalcoholic fatty liver disease (NAFLD). Metabolism 2016;65(8):1038-48. https://doi.org/10.1016/j.metabol.2015.12.012
  3. Neshat SY, Quiroz VM, Wang Y, Tamayo S, Doloff JC. Liver disease: induction, progression, immunological mechanisms, and therapeutic interventions. Int J Mol Sci 2021;22(13).
  4. Chen J, Wang X, Xia T, Bi Y, Liu B, Fu J, Zhu R. Molecular mechanisms and therapeutic implications of dihydromyricetin in liver disease. Biomed Pharmacother 2021;142:111927.
  5. Wang C, Ma C, Gong L, Dai S, Li Y. Preventive and therapeutic role of betaine in liver disease: a review on molecular mechanisms. Eur J Pharmacol 2021;912:174604.
  6. Xiao X, Hu Q, Deng X, Shi K, Zhang W, Jiang Y, Ma X, Zeng J, Wang X. Old wine in new bottles: kaempferol is a promising agent for treating the trilogy of liver diseases. Pharmacol Res 2021;175:106005.
  7. Zhang QH, Wu CF, Duan L, Yang JY. Protective effects of ginsenoside Rg(3) against cyclophosphamide-induced DNA damage and cell apoptosis in mice. Arch Toxicol 2008;82(2):117-23.
  8. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Current Vascular Pharmacol 2009;7(3):293-302. https://doi.org/10.2174/157016109788340767
  9. Helms S. Cancer prevention and therapeutics: Panax ginseng, Alternative medicine review. J Clinical Therapeut 2004;9(3):259-74.
  10. Kim IW, Sun WS, Yun BS, Kim NR, Min D, Kim SK. Characterizing a full spectrum of physico-chemical properties of (20S)- and (20R)-ginsenoside Rg3 to be proposed as standard reference materials. J Ginseng Res 2013;37(1):124-34. https://doi.org/10.5142/jgr.2013.37.124
  11. Huang WC, Huang TH, Yeh KW, Chen YL, Shen SC, Liou CJ. Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice. J Ginseng Res 2021;45(6):654-64. https://doi.org/10.1016/j.jgr.2021.03.002
  12. Ma CH, Chou WC, Wu CH, Jou IM, Tu YK, Hsieh PL, Tsai KL. Ginsenoside Rg3 attenuates TNF-α-induced damage in chondrocytes through regulating SIRT1-mediated anti-apoptotic and anti-inflammatory mechanisms. Antioxidants (Basel) 2021;10(12).
  13. Liu Z, Liu T, Li W, Li J, Wang C, Zhang K. Insights into the antitumor mechanism of ginsenosides Rg3. Mol Biol Rep 2021;48(3):2639-52. https://doi.org/10.1007/s11033-021-06187-2
  14. Zhang W, Aryan M, Qian S, Cabrera R, Liu X. A focused review on recent advances in the diagnosis and treatment of viral hepatitis. Gastroenterol Res 2021;14(3):139-56. https://doi.org/10.14740/gr1405
  15. Pisano MB, Giadans CG, Flichman DM, Re VE, Preciado MV, Valva P. Viral hepatitis update: progress and perspectives. World J Gastroenterol 2021;27(26):4018-44. https://doi.org/10.3748/wjg.v27.i26.4018
  16. Herrscher C, Roingeard P, Blanchard E. Hepatitis B virus entry into cells. Cells 2020;9(6).
  17. Lee J, Tsai K-N, Ou J-hJ. Mechanisms of hepatitis B virus-induced hepatocarcinogenesis. Viruses and Human Cancer 2021:47-70.
  18. Xie Y. Hepatitis B virus-associated hepatocellular carcinoma. Adv Exp Med Biol 2017;1018:11-21. https://doi.org/10.1007/978-981-10-5765-6_2
  19. Zhao F, Xie X, Tan X, Yu H, Tian M, Lv H, Qin C, Qi J, Zhu Q. The functions of hepatitis B virus encoding proteins: viral persistence and liver pathogenesis. Front Immunol 2021;12:691766.
  20. Kang LJ, Choi YJ, Lee SG. Stimulation of TRAF6/TAK1 degradation and inhibition of JNK/AP-1 signalling by ginsenoside Rg3 attenuates hepatitis B virus replication. Int J Biochem Cell Biol 2013;45(11):2612-21. https://doi.org/10.1016/j.biocel.2013.08.016
  21. Roger S, Ducancelle A, Le Guillou-Guillemette H, Gaudy C, Lunel F. HCV virology and diagnosis. Clinics Res Hepatol Gastroenterol 2021;45(3):101626.
  22. Rabaan AA, Al-Ahmed SH, Bazzi AM, Alfouzan WA, Alsuliman SA, Aldrazi FA, Haque S. Overview of hepatitis C infection, molecular biology, and new treatment. J Infect Public Health 2020;13(5):773-83. https://doi.org/10.1016/j.jiph.2019.11.015
  23. Hino K, Nishina S, Sasaki K, Hara Y. Mitochondrial damage and iron metabolic dysregulation in hepatitis C virus infection. Free Radic Biol Med 2019;133:193-9. https://doi.org/10.1016/j.freeradbiomed.2018.09.044
  24. Kim SJ, Jang JY, Kim EJ, Cho EK, Ahn DG, Kim C, Park HS, Jeong SW, Lee SH, Kim SG, et al. Ginsenoside Rg3 restores hepatitis C virus-induced aberrant mitochondrial dynamics and inhibits virus propagation. Hepatology 2017;66(3):758-71. https://doi.org/10.1002/hep.29177
  25. Yoo YC, Lee J, Park SR, Nam KY, Cho YH, Choi JE. Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice. J Ginseng Res 2013;37(1):80-6. https://doi.org/10.5142/jgr.2013.37.80
  26. Katarey D, Verma S. Drug-induced liver injury. Clinical Medicine (London, England) 2016;16(Suppl 6):s104-9. https://doi.org/10.7861/clinmedicine.16-6-s104
  27. Davern TJ. Drug-induced liver disease. Clin Liver Dis 2012;16(2):231-45. https://doi.org/10.1016/j.cld.2012.03.002
  28. Gum SI, Cho MK. Korean red ginseng extract prevents APAP-induced hepatotoxicity through metabolic enzyme regulation: the role of ginsenoside Rg3, a protopanaxadiol. Liver Int 2013;33(7):1071-84. https://doi.org/10.1111/liv.12046
  29. Gum SI, Cho MK. The amelioration of N-acetyl-p-benzoquinone imine toxicity by ginsenoside Rg3: the role of Nrf2-mediated detoxification and Mrp1/Mrp3 transports. Oxid Med Cell Longev 2013;2013:957947.
  30. Zhou YD, Hou JG, Liu W, Ren S, Wang YP, Zhang R, Chen C, Wang Z, Li W. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis. Int Immunopharmacol 2018;59:21-30. https://doi.org/10.1016/j.intimp.2018.03.030
  31. Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of mitophagy and its role in sepsis induced organ dysfunction: a review. Front Cell Dev Biol 2021;9:664896.
  32. Strnad P, Tacke F, Koch A, Trautwein C. Liver - guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol 2017;14(1):55-66. https://doi.org/10.1038/nrgastro.2016.168
  33. Yin X, Xin H, Mao S, Wu G, Guo L. The role of autophagy in sepsis: protection and injury to organs. Front Physiol 2019;10:1071.
  34. Xing W, Yang L, Peng Y, Wang Q, Gao M, Yang M, Xiao X. Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux. Biosci Rep 2017;37(4).
  35. Wu P, Yu X, Peng Y, Wang QL, Deng LT, Xing W. Ginsenoside Rg3 alleviates septic liver injury by regulating the lncRNA TUG1/miR-200c-3p/SIRT1 axis. J Inflamm (Lond) 2021;18(1):31.
  36. Azman KF, Safdar A, Zakaria R. D-galactose-induced liver aging model: its underlying mechanisms and potential therapeutic interventions. Exp Gerontol 2021;150:111372.
  37. Li W, Wang JQ, Zhou YD, Hou JG, Liu Y, Wang YP, Gong XJ, Lin XH, Jiang S, Wang Z. Rare ginsenoside 20(R)-Rg3 inhibits D-galactose-induced liver and kidney injury by regulating oxidative stress-induced apoptosis. Am J Chin Med 2020;48(5):1141-57. https://doi.org/10.1142/S0192415X20500561
  38. Romani AMP. Cisplatin in cancer treatment. Biochem Pharmacol 2022;206:115323.
  39. Quintanilha JCF, Saavedra KF, Visacri MB, Moriel P, Salazar LA. Role of epigenetic mechanisms in cisplatin-induced toxicity. Critical Rev Oncol/hematol 2019;137:131-42. https://doi.org/10.1016/j.critrevonc.2019.03.004
  40. Lee CK, Park KK, Chung AS, Chung WY. Ginsenoside Rg3 enhances the chemosensitivity of tumors to cisplatin by reducing the basal level of nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1/NAD(P)H quinone oxidoreductase-1 and prevents normal tissue damage by scavenging cisplatin-induced intracellular reactive oxygen species. Food Chem Toxicol 2012;50(7):2565-74. https://doi.org/10.1016/j.fct.2012.01.005
  41. Park HM, Kim SJ, Mun AR, Go HK, Kim GB, Kim SZ, Jang SI, Lee SJ, Kim JS, Kang HS. Korean red ginseng and its primary ginsenosides inhibit ethanol-induced oxidative injury by suppression of the MAPK pathway in TIB-73 cells. J Ethnopharmacol 2012;141(3):1071-6. https://doi.org/10.1016/j.jep.2012.03.038
  42. Lee HU, Bae EA, Han MJ, Kim DH. Hepatoprotective effect of 20(S)-ginsenosides Rg3 and its metabolite 20(S)-ginsenoside Rh2 on tert-butyl hydroperoxide-induced liver injury. Biol Pharm Bull 2005;28(10):1992-4. https://doi.org/10.1248/bpb.28.1992
  43. Kang KS, Kim HY, Yamabe N, Park JH, Yokozawa T. Preventive effect of 20(S)-ginsenoside Rg3 against lipopolysaccharide-induced hepatic and renal injury in rats. Free Radic Res 2007;41(10):1181-8. https://doi.org/10.1080/10715760701581740
  44. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine 2018;24(7):908-22. https://doi.org/10.1038/s41591-018-0104-9
  45. Masoodi M, Gastaldelli A, Hyotylainen T, Arretxe E, Alonso C, Gaggini M, et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol 2021;18(12):835-56. https://doi.org/10.1038/s41575-021-00502-9
  46. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, Colombo M, Craxi A, Crespo J, Day CP, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J Hepatol 2018;69(4):896-904. https://doi.org/10.1016/j.jhep.2018.05.036
  47. Foerster F, Gairing SJ, Muller L, Galle PR. NAFLD-driven HCC: safety and efficacy of current and emerging treatment options. J Hepatol 2022;76(2):446-57. https://doi.org/10.1016/j.jhep.2021.09.007
  48. Lee S, Lee MS, Kim CT, Kim IH, Kim Y. Ginsenoside Rg3 reduces lipid accumulation with AMP-Activated Protein Kinase (AMPK) activation in HepG2 cells. Int J Mol Sci 2012;13(5):5729-39. https://doi.org/10.3390/ijms13055729
  49. Lee JB, Yoon SJ, Lee SH, Lee MS, Jung H, Kim TD, Yoon SR, Choi I, Kim IS, Chung SW, et al. Ginsenoside Rg3 ameliorated HFD-induced hepatic steatosis through downregulation of STAT5-PPARgamma. J Endocrinol 2017;235(3):223-35. https://doi.org/10.1530/JOE-17-0233
  50. Nan B, Liu YL, You Y, Li WC, Fan JJ, Wang YS, Piao CH, Hu DL, Lu GJ, Wang YH. Protective effects of enhanced minor ginsenosides in Lactobacillus fermentum KP-3-fermented ginseng in mice fed a high fat diet. Food Funct 2018;9(11):6020-8. https://doi.org/10.1039/C8FO01056K
  51. Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci 2016;61(5):1294-303. https://doi.org/10.1007/s10620-016-4049-x
  52. Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature 2014;510(7503):58-67. https://doi.org/10.1038/nature13475
  53. Kim JC, Jeon JY, Yang WS, Kim CH, Eom DW. Combined amelioration of ginsenoside (Rg1, Rb1, and Rg3)-enriched Korean red ginseng and probiotic lactobacillus on non-alcoholic fatty liver disease. Current Pharmaceut Biotechnol 2019;20(3):222-31. https://doi.org/10.2174/1389201020666190311143554
  54. Choi SY, Park JS, Shon CH, Lee CY, Ryu JM, Son DJ, Hwang BY, Yoo HS, Cho YC, Lee J, et al. Fermented Korean red ginseng extract enriched in rd and Rg3 protects against non-alcoholic fatty liver disease through regulation of mTORC1. Nutrients 2019;11(12).
  55. Lee JH, Oh JY, Kim SH, Oh IJ, Lee YH, Lee KW, Lee WH, Kim JH. Pharmaceutical efficacy of gypenoside LXXV on non-alcoholic steatohepatitis (NASH). Biomolecules 2020;10(10).
  56. Aydin MM, Akcali KC. Liver fibrosis. Turk J Gastroenterol 2018;29(1):14-21. https://doi.org/10.5152/tjg.2018.17330
  57. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019;70(1):151-71. https://doi.org/10.1016/j.jhep.2018.09.014
  58. Khomich O, Ivanov AV, Bartosch B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells 2019;9(1).
  59. Li K, Wang W, Xiao W. Astaxanthin: a promising therapeutic agent for organ fibrosis. Pharmacol Res 2023;188:106657.
  60. Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular mechanisms of liver fibrosis. Front Pharmacol 2021;12:671640.
  61. Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN. TGF-В in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells 2019;8(11).
  62. Cui X, Wang K, Zhang J, Cao ZB. Aerobic Exercise ameliorates myocardial fibrosis via affecting vitamin D receptor and transforming growth factor-beta1 signaling in vitamin D-deficient mice. Nutrients 2023;15(3).
  63. Liu X, Mi X, Wang Z, Zhang M, Hou J, Jiang S, Wang Y, Chen C, Li W. Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis 2020;11(6):454.
  64. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: A Cancer J Clinicians 2020;70(1):7-30. https://doi.org/10.3322/caac.21590
  65. Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, Yang S, Gong Z, Lai PBS, Chen GG. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Therapeut Adv Med Oncol 2018;10:1758835918816287.
  66. De Matteis S, Ragusa A, Marisi G, De Domenico S, Casadei Gardini A, Bonaf'e M, Giudetti AM. Aberrant metabolism in hepatocellular carcinoma provides diagnostic and therapeutic opportunities. Oxid Med Cell Longev 2018;2018:7512159.
  67. Zhang C, Liu L, Yu Y, Chen B, Tang C, Li X. Antitumor effects of ginsenoside Rg3 on human hepatocellular carcinoma cells. Mol Med Rep 2012;5(5):1295-8.
  68. Park HM, Kim SJ, Kim JS, Kang HS. Reactive oxygen species mediated ginsenoside Rg3- and Rh2-induced apoptosis in hepatoma cells through mitochondrial signaling pathways. Food Chem Toxicol 2012;50(8):2736-41. https://doi.org/10.1016/j.fct.2012.05.027
  69. Jiang JW, Chen XM, Chen XH, Zheng SS. Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway. World J Gastroenterol 2011;17(31):3605-13. https://doi.org/10.3748/wjg.v17.i31.3605
  70. Cheong JH, Kim H, Hong MJ, Yang MH, Kim JW, Yoo H, Yang H, Park JH, Sung SH, Kim HP, et al. Stereoisomer-specific anticancer activities of ginsenoside Rg3 and Rh2 in HepG2 cells: disparity in cytotoxicity and autophagy-inducing effects due to 20(S)-epimers. Biol Pharm Bull 2015;38(1):102-8. https://doi.org/10.1248/bpb.b14-00603
  71. Wu R, Ru Q, Chen L, Ma B, Li C. Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice. J Food Sci 2014;79(7):H1430-5. https://doi.org/10.1111/1750-3841.12518
  72. Teng S, Wang Y, Li P, Liu J, Wei A, Wang H, Meng X, Pan D, Zhang X. Effects of R type and S type ginsenoside Rg3 on DNA methylation in human hepatocarcinoma cells. Mol Med Rep 2017;15(4):2029-38. https://doi.org/10.3892/mmr.2017.6255
  73. Li X, Tsauo J, Geng C, Zhao H, Lei X, Li X. Ginsenoside Rg3 decreases NHE1 expression via inhibiting EGF-EGFR-ERK1/2-HIF-1 alpha pathway in hepatocellular carcinoma: a novel antitumor mechanism. Am J Chin Med 2018;46(8):1915-31. https://doi.org/10.1142/S0192415X18500969
  74. Shan K, Wang Y, Hua H, Qin S, Yang A, Shao J. Ginsenoside Rg3 combined with oxaliplatin inhibits the proliferation and promotes apoptosis of hepatocellular carcinoma cells via downregulating PCNA and cyclin D1. Biological Pharmaceut Bulletin 2019;42(6):900-5. https://doi.org/10.1248/bpb.b18-00852
  75. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: A Cancer J Clinicians 2011;61(4):212-36. https://doi.org/10.3322/caac.20121
  76. Yuan C, Ning Y, Pan Y. Emerging roles of HOTAIR in human cancer. J Cell Biochem 2020;121(5-6):3235-47. https://doi.org/10.1002/jcb.29591
  77. Pu Z, Ge F, Wang Y, Jiang Z, Zhu S, Qin S, Dai Q, Liu H, Hua H. Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic. Bioengineered 2021;12(1):2398-409. https://doi.org/10.1080/21655979.2021.1932211
  78. Zhang H, Tang QF, Sun MY, Zhang CY, Zhu JY, Shen YL, Zhao B, Shao ZY, Zhang LJ, Zhang H. ARHGAP9 suppresses the migration and invasion of hepatocellular carcinoma cells through up-regulating FOXJ2/E-cadherin. Cell Death Dis 2018;9(9):916.
  79. Sun MY, Song YN, Zhang M, Zhang CY, Zhang LJ, Zhang H. Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9. Oncol Lett 2019;17(1):965-73.
  80. Hu S, Zhu Y, Xia X, Xu X, Chen F, Miao X, Chen X. Ginsenoside Rg3 prolongs survival of the orthotopic hepatocellular carcinoma model by inducing apoptosis and inhibiting angiogenesis. Anal Cell Pathol (Amst) 2019;2019:3815786.
  81. Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ, Cheng AL. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Experiment Therapeut 2011;337(1):155-61. https://doi.org/10.1124/jpet.110.175786
  82. Fornari F, Giovannini C, Piscaglia F, Gramantieri L. Elucidating the molecular basis of sorafenib resistance in HCC: current findings and future directions. J Hepatocell Carcinoma 2021;8:741-57. https://doi.org/10.2147/JHC.S285726
  83. Wang W, Xiao Y, Li S, Zhu X, Meng L, Song C, Yu C, Jiang N, Liu Y. Synergistic activity of magnolin combined with B-RAF inhibitor SB590885 in hepatocellular carcinoma cells via targeting PI3K-AKT/mTOR and ERK MAPK pathway. American J Translat Res 2019;11(6):3816-24.
  84. Lu M, Fei Z, Zhang G. Synergistic anticancer activity of 20(S)-Ginsenoside Rg3 and Sorafenib in hepatocellular carcinoma by modulating PTEN/Akt signaling pathway. Biomed Pharmacother 2018;97:1282-8. https://doi.org/10.1016/j.biopha.2017.11.006
  85. Wei Q, Ren Y, Zheng X, Yang S, Lu T, Ji H, Hua H, Shan K. Ginsenoside Rg3 and sorafenib combination therapy relieves the hepatocellular carcinomaprogression through regulating the HK2-mediated glycolysis and PI3K/Akt signaling pathway. Bioengineered 2022;13(5):13919-28. https://doi.org/10.1080/21655979.2022.2074616
  86. Chen YJ, Wu JY, Deng YY, Wu Y, Wang XQ, Li AS, Wong LY, Fu XQ, Yu ZL, Liang C. Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models. J Ginseng Res 2022;46(3):418-25. https://doi.org/10.1016/j.jgr.2021.07.002
  87. Lee JY, Jung KH, Morgan MJ, Kang YR, Lee HS, Koo GB, Hong SS, Kwon SW, Kim YS. Sensitization of TRAIL-induced cell death by 20(S)-ginsenoside Rg3 via CHOP-mediated DR5 upregulation in human hepatocellular carcinoma cells. Mol Cancer Ther 2013;12(3):274-85. https://doi.org/10.1158/1535-7163.MCT-12-0054
  88. Kim DG, Jung KH, Lee DG, Yoon JH, Choi KS, Kwon SW, Shen HM, Morgan MJ, Hong SS, Kim YS. 20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin. Oncotarget 2014;5(12):4438-51. https://doi.org/10.18632/oncotarget.2034
  89. Yamanaka K, Hatano E, Kitamura K, Iida T, Ishii T, Machimito T, Taura K, Yasuchika K, Isoda H, Shibata T, et al. Early evaluation of transcatheter arterial chemoembolization-refractory hepatocellular carcinoma. J Gastroenterol 2012;47(3):343-6. https://doi.org/10.1007/s00535-011-0511-x
  90. Huo YR, Eslick GD. Transcatheter arterial chemoembolization plus radiotherapy compared with chemoembolization alone for hepatocellular carcinoma: a systematic review and meta-analysis. JAMA Oncology 2015;1(6):756-65. https://doi.org/10.1001/jamaoncol.2015.2189
  91. Yu Y, Zhang C, Liu L, Li X. Hepatic arterial administration of ginsenoside Rg3 and transcatheter arterial embolization for the treatment of VX2 liver carcinomas. Exp Ther Med 2013;5(3):761-6. https://doi.org/10.3892/etm.2012.873
  92. Zhou B, Wang J, Yan Z. Ginsenoside Rg3 attenuates hepatoma VEGF overexpression after hepatic artery embolization in an orthotopic transplantation hepatocellular carcinoma rat model. OncoTargets and Therapy 2014;7:1945-54. https://doi.org/10.2147/OTT.S69830
  93. Zhou B, Yan Z, Liu R, Shi P, Qian S, Qu X, Zhu L, Zhang W, Wang J. Prospective study of transcatheter arterial chemoembolization (TACE) with ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology 2016;280(2):630-9. https://doi.org/10.1148/radiol.2016150719
  94. Wang B, Xu Q, Zhou C, Lin Y. Liposomes co-loaded with ursolic acid and ginsenoside Rg3 in the treatment of hepatocellular carcinoma. Acta Biochim Pol 2021;68(4):711-5. https://doi.org/10.18388/abp.2020_5608
  95. Sun S, Guan Q, Shang E, Xiao H, Yu X, Shi L, Zhao C, Guo Y, Lv S, Li Y. Hyaluronic acid-coated nanostructured lipid carriers for loading multiple traditional Chinese medicine components for liver cancer treatment. Pakistan J Pharmaceut Sci 2020;33(1):109-19.
  96. He S, Tian S, He X, Le X, Ning Y, Chen J, Chen H, Mu J, Xu K, Xiang Q, et al. Multiple targeted self-emulsifying compound RGO reveals obvious anti-tumor potential in hepatocellular carcinoma. Mol Ther Oncolytics 2021;22:604-16. https://doi.org/10.1016/j.omto.2021.08.008
  97. Ren Z, Chen X, Hong L, Zhao X, Cui G, Li A, Liu Y, Zhou L, Sun R, Shen S, et al. Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis. Small 2020;16(2):e1905233.
  98. Rahimi S, van Leeuwen D, Roshanzamir F, Pandit S, Shi L, Sasanian N, Nielsen J, Esbjorner EK, Mijakovic I. Ginsenoside Rg3 reduces the toxicity of graphene oxide used for pH-responsive delivery of doxorubicin to liver and breast cancer cells. Pharmaceutics 2023;15(2).
  99. Liu H, Hu X, Li L, Meng X, Fang Y, Xia Y. Micron and nano hybrid ufasomes from conjugated linoleic acid, their vesiculation and encapsulation of ginsenoside Rg3. J Sci Food Agric 2022;102:4140-50. https://doi.org/10.1002/jsfa.11763
  100. Yan M, Diao M, Zhang C, Shen X, Zhan X, Xi C, Zhao C, Zhang T. Lactoferrin-ginsenoside Rg3 complex ingredients: study of interaction mechanism and preparation of oil-in-water emulsion. Food Chem 2021;363:130239.