DOI QR코드

DOI QR Code

유공벽이 설치된 부유체 동요 평가를 위한 주파수 영역 해석

Frequency-Domain Analysis for Motion of Floating Structures with Perforated Wall

  • 김정수 (한국건설기술연구원 구조연구본부) ;
  • 정연주 (한국건설기술연구원 구조연구본부) ;
  • 김영택 (한국건설기술연구원 수자원하천연구본부)
  • Jeongsoo Kim (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Youn Ju Jeong (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Young-Taek Kim (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2024.01.08
  • 심사 : 2024.01.29
  • 발행 : 2024.02.29

초록

해상 산업시설을 중심의 부유식 구조물 수요가 생활 밀접형 시설로 점차 확대됨에 따라, 부유 구조물의 동요를 저감하기 위한 기술 필요성이 대두되고 있다. 본 연구는 부유체 외부에 유공벽이 설치된 부유식 구조물을 제시하고, 규칙파 및 불규칙파 조건에서의 주파수 영역 해석을 통해 해당 구조물의 응답을 조사하였다. 제안된 구조물은 내부 부유체와 유공벽이 포함된 외부 부유체가 결합된 형태로, 유공률별(0~30%) 해석 모델을 생성해 부유체 중심점과 가장자리에서의 상하 및 회전 동요가 비교되었다. 해석 결과는 유공벽의 유공률 증가를 통해 부유체의 상하 및 회전 동요를 저감할 수 있음을 보여주었다. 또한 제안된 부유체를 사용함으로써 무유공 부유체 대비 규칙파와 불규칙파 조건에서 각각 10%, 2% 내외의 응답 감소 효과가 나타남을 확인할 수 있었다.

As increasing demands for a floating structure expanded from offshore industry facilities to living facilities, it has emerged that necessity of techniques to reduce motions of a floating structure. This study present a floating structure with porosity on the outer surface of the floater. Under each regular and irregular wave, responses of the floater was investigated in frequency domain. The proposed structure is composed of inner and outer floaters, which are connected to each other and the outer wall is perforated, and the heave and the pitch of floaters with different perforation rates (0~30%) were compared with at both the center and the edge. The results showed that pitch responses can be decreased by increasing of perforation rate of the floater. Comparing with responses of the non-perforated floater, those of the proposed floating structure were reduced to above 10% and 2%, respectively for regular and irregular wave conditions.

키워드

과제정보

본 연구는 서울대학교 부유식인프라연구단을 통한 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2023-00250727, 다목적 해상 부유식인프라 건설기술개발).

참고문헌

  1. Chen, M., Guo, H., Wang, R., Tao, R. and Cheng, N. (2021). Effects of gap resonance on the hydrodynamics and dynamics of a multi-module floating system with narrow gaps. Journal of Marine Science and Engineering, 9, 1256.
  2. Cho, H.Y., Jeong, W.M., Oh, S.-H. and Baek, W.D. (2020). Parameter estimation and fitting error analysis of the representative spectrums using the wave spectrum off the Namhangjin, East Sea. Journal of Korean Society of Coastal and Ocean Engineers, 32(5), 363-371 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.5.363
  3. Han, M. and Wang, C.M. (2021). Modelling wide perforated breakwater with horizontal slits using Hybrid-BEM method. Ocean Engineering, 222, 108630.
  4. Han, M. and Wang, C.M. (2022). Efficiency and wave run-up of porous breakwater with sloping deck. Journal of Marine Science and Engineering, 10, 1896.
  5. Hur, D.-S., Lee, J. and Lee, W.-D. (2014). Reflection and hydraulic characteristics inside two-chamber vertical slit caisson in 3-D oblique wave field. Journal of Ocean Engineering and Technology, 28(3), 227-235 (in Korean).
  6. IPCC (2007). Summary for policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, UK and NY, USA. 3-18 (in Korean).
  7. Kee, S.T. (2001). Resonance and response of the submerged dual buoy/porous-membrane breakwaters in oblique seas. Journal of Ocean Engineering and Technology, 15(2), 22-32.
  8. Kim, J., Choi, J.-S. and Cho, I.-H. (2021). Study on proper position of wave gauges by analyzing wave field around a wave energy converter. Journal of the Korean Society for Marine Environment and Energy, 24(1), 9-19 (in Korean). https://doi.org/10.7846/JKOSMEE.2021.24.1.9
  9. KIMST (2023). KIMST Insight, Seoul, Korea. 14-17 (in Korean).
  10. Kim, Y.T. (2019). Hydraulic experiments on reflection coefficients for perforated wall caisson with rock fill. Journal of Korean Society of Coastal and Ocean Engineers, 31(6), 403-408 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.6.403
  11. Kim, Y.T. and Lee, J.I. (2014). Estimation of optimal slit length of perforated wall below still water level: Single chamber condition. Journal of Korea Water Resources Association, 46(4), 327-334 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.4.327
  12. Ko, K., Pack, S., Park, C. and Lee, J.-I. (2015). Wave pressure characteristics of pile-Supported breakwater with the horizontal slit walls. KSCE Journal of Civil and Environmental Engineering Research, 35(1), 119-128 (in Korean). https://doi.org/10.12652/Ksce.2015.35.1.0119
  13. Lee, D. (2023). Efficiency Review of Floating Breakwater Through Hydraulic Model Experiment, Master's Thesis, Kangwon National University (in Korean).
  14. Lee, J.-I., Kim, S.O. and Kim, K.H. (2013). Experiments for side wall effects of a perforated structure under oblique incident waves. KSCE Journal of Civil and Environmental Engineering Research, 33(6), 2343-2350 (in Korean). https://doi.org/10.12652/Ksce.2013.33.6.2343
  15. Park, M.S., Jeong, Y.J. and Kim, Y.T. (2022). Hydrodynamic response analysis of hybrid floating structure according to length of damping plate. Journal of Korean Society of Coastal and Ocean Engineers, 34(6), 275-289 (in Korean). https://doi.org/10.9765/KSCOE.2022.34.6.275
  16. Yoon, J.-S., Han, S.-J. and Cho, Y.-S. (2011). Experimental study on functional improvement of porous floating breakwaters. Proc. Korea Water Resources Assoc. Conf., Daegu, Korea, 44-48 (in Korean).
  17. Yoon, J.-S., Ha, T., Yeh, D., Lee, B.W. and Song, H.-G. (2021). Hydraulic experiment on floating breakwater mounted wave-power generation. Proc. Korea Water Resources Assoc. Conf., Gwangju, Korea, 214 (in Korean).