DOI QR코드

DOI QR Code

리튬 황 전지용 Sponge 형태의 S@ZIF 67/rGO 양극재의 전기화학 특성 분석

The Electrochemical Properties of Sponge Type S@ZIF67/rGO as the Cathode Material for Lithium Sulfur Batteries

  • 서채린 (순천향대학교 에너지공학과) ;
  • 김성훈 (순천향대학교 에너지공학과) ;
  • 안욱 (순천향대학교 에너지공학과)
  • Chaelin Seo (Department of Energy Engineering, Soon Chun Hyang University) ;
  • Sunghoon Kim (Department of Energy Engineering, Soon Chun Hyang University) ;
  • Wook Ahn (Department of Energy Engineering, Soon Chun Hyang University)
  • 투고 : 2024.01.09
  • 심사 : 2024.01.31
  • 발행 : 2024.02.29

초록

본 연구에서는 유황의 절연 특성 및 리튬 폴리 설파이드 용출로 인해 전지 수명 저하를 최소화하기 위해 ZIF67/rGO를 사용하였다. rGO로 포장이 된 ZIF67는 탄소 스펀지 내에 공간을 더 많이 만들어주며, 다량의 유황을 보관할 수 있다. 유황@ZIF67/rGO 복합체를 합성하고, 스펀지 형태로 제조함으로써 유황의 담지 능력을 향상시켰다. 그 결과로서 높은 초기용량을 보였으며, 약 1093 mAh g-1의 값을 나타내며 100사이클 후에 84%의 용량유지율을 보임을 확인하였다. 코발트와 탄소의 복합화를 통하여 유황과의 상호작용이 높아 ZIF67/rGO는 리튬유황전지의 양극 활물질인 유황을 담지하는 담지체로서의 높은 성능을 나타남을 확인하였으며, 높은 초기용량과 용량유지율이 개선되었음을 확인하였다.

In this study, ZIF67/rGO was used to minimize the battery life degradation due to the insulating properties of sulfur and the elution of lithium polysulfide. ZIF67 wrapped in rGO creates more space within the carbon sponge and can hold a large amount of sulfur. The sulfur@ZIF67/rGO composite was synthesized and prepared as a sponge to enhance the sulfur retention capacity. The result showed a high initial capacity, with a value of about 1093 mAh g-1 and a capacity retention rate of 84% after 100 cycles. The high interaction with sulfur through the complexation of cobalt and carbon confirmed that ZIF67/rGO exhibits high performance as a carrier for sulfur, the anode active material of lithium-sulfur batteries, and the high initial capacity and improved capacity retention rate were confirmed.

키워드

과제정보

This result was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004), and also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1C1C1010493).

참고문헌

  1. Y. Tang, Y. Zhang, W. Li, B. Ma, and X. Chen, Rational material design for ultrafast rechargeable lithium-ion batteries, Chem. Soc. Rev., 44(17), 5926 (2015). 
  2. J. Y. Hong, Y. J. Jung, D.-W. Park, S. W. Chung, and S. Kim, Synthesis and electrochemical analysis of electrode prepared from zeolitic imidazolate framework (ZIF)-67/graphene composite for lithium sulfur cells, Electrochim. Acta, 259, 1021 (2018). 
  3. A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, Rechargeable lithium-sulfur batteries, Chem. Rev., 114(23), 11751 (2014). 
  4. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode materials with high capacity and cycling stability, Nano Lett., 11(7), 2644 (2011). 
  5. S. K. Hur and S. A. Lim, Study of improvement life and electrochemical characteristics for lithium/sulfur battery using porous carbon sphere, J. Korean Electrochem. Soc., 24(3), 42 (2021) 
  6. S. S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions, J. Power Sources, 231, 153 (2013). 
  7. Y. Matsumura, S. Wang, and J. Mondori, Interactions between disordered carbon and lithium in lithium ion rechargeable batteries, Carbon, 33(10), 1457 (1995). 
  8. J. Guo, Y. Xu, and C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries, Nano Lett., 11(10), 4288 (2011). 
  9. G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, and Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries, Nano Lett., 11(10), 4462 (2011). 
  10. R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, and D. Aurbach, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Adv. Mater., 23(47), 5641 (2011). 
  11. J.-Z. Wang, L. Lu, M. Choucair, J. A. Stride, X. Xu, and H.-K. Liu, Sulfur-graphene composite for rechargeable lithium batteries, J. Power Sources, 196(16), 7030 (2011). 
  12. G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I. R. Gentle, F. Li, and H.-M. Cheng, Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries, ACS nano, 7(6), 5367 (2013). 
  13. M. Zhen, J. Wang, X. Wang, and C. Wang, Hierarchical N-rich carbon sponge with excellent cycling performance for lithium-sulfur battery at high rates, Chem. Eur. J., 24(22), 5860 (2018). 
  14. G. C. Li and W. Zhao, Zeolitic imidazolate frameworks derived Co nanoparticles anchored on graphene as superior anode material for lithium ion batteries, J. Alloys Compnd., 716, 156 (2017). 
  15. G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, and J. Geng, Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries, Nat. Commun., 7(1), 10601 (2016). 
  16. Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang, Q. Li, C. Wang, and L. Yin, Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries, Nano Energy, 23, 15 (2016). 
  17. X. Wang, C. Chi, J. Tao, Y. Peng, S. Ying, Y. Qian, J. Dong, Z. Hu, Y. Gu, and D. Zhao, Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals, Chem. Commun., 52(52), 8087 (2016). 
  18. X.-L. Du, Y. You, Y. Yan, D. Zhang, H.-P. Cong, H. Qin, C. Zhang, F.-F. Cao, K. C. Jiang, Y. Wang, S. Xin, and J.-B. Ho, Conductive carbon network inside a sulfur-impregnated carbon sponge: A bioninspired high-performance cathode for Li-S battery, ACS Appl. Mater. Interfaces, 8(34), 22261 (2016). 
  19. C. Zhang, H. B Wu, C. Yuan, Z. Guo, and X. W. Lou, Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries, Angew. Chem. Int. Ed., 51(38), 9592 (2021). 
  20. X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nature Mater., 8(6), 500 (2009). 
  21. M. Cheng, L. Li, Y. Chen, X. Guo, and B. Zhong, A function binder-sulfonated poly(ether ether ketone) for sulfur cathode of Li-S batteries, RSC Adv., 6(81), 77937 (2016).