DOI QR코드

DOI QR Code

Exploiting Natural Diatom Shells as an Affordable Polar Host for Sulfur in Li-S Batteries

  • Hyean-Yeol Park (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Sun Hyu Kim (Department of Chemical and Biological Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Jeong-Hoon Yu (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Ji Eun Kwon (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Ji Yang Lim (Department of Chemical and Biological Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Si Won Choi (Department of Chemical and Biological Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Jong-Sung Yu (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Yongju Jung (Department of Chemical and Biological Engineering, Korea University of Technology and Education (KOREATECH))
  • Received : 2023.09.25
  • Accepted : 2023.10.18
  • Published : 2024.02.29

Abstract

Given the high theoretical capacity (1,675 mAh g-1) and the inherent affordability and ubiquity of elemental sulfur, it stands out as a prominent cathode material for advanced lithium metal batteries. Traditionally, sulfur was sequestered within conductive porous carbons, rooted in the understanding that their inherent conductivity could offset sulfur's non-conductive nature. This study, however, pivots toward a transformative approach by utilizing diatom shell (DS, diatomite)-a naturally abundant and economically viable siliceous mineral-as a sulfur host. This approach enabled the development of a sulfurlayered diatomite/S composite (DS/S) for cathodic applications. Even in the face of the insulating nature of both diatomite and sulfur, the DS/S composite displayed vigorous participation in the electrochemical conversion process. Furthermore, this composite substantially curbed the loss of soluble polysulfides and minimized structural wear during cycling. As a testament to its efficacy, our Li-S battery, integrating this composite, exhibited an excellent cycling performance: a specific capacity of 732 mAh g-1 after 100 cycles and a robust 77% capacity retention. These findings challenge the erstwhile conviction of requiring a conductive host for sulfur. Owing to diatomite's hierarchical porous architecture, eco-friendliness, and accessibility, the DS/S electrode boasts optimal sulfur utilization, elevated specific capacity, enhanced rate capabilities at intensified C rates, and steadfast cycling stability that underscore its vast commercial promise.

Keywords

Acknowledgement

This work was supported by the Education and Research Promotion Program (2022) of KOREATECH and Individual Basic Science and Engineering Research Program funded by the Ministry of Education through the National Research Foundation of Korea (Grant No.: 2021R1F1A1062040 and RS-2023-00223196). The authors express their gratitude to the KBSIs at Pusan and Daegu for TEM/SEM analysis and the Cooperative Equipment Center at KOREATECH for their valuable assistance in analysis.

References

  1. M. Zhao, B.-Q. Li, X.-Q. Zhang, J.-Q. Huang, and Q. Zhang, ACS Cent. Sci., 2020, 6(7), 1095-1104. https://doi.org/10.1021/acscentsci.0c00449
  2. Y. Li and S. Guo, Matter, 2021, 4(4), 1142-1188. https://doi.org/10.1016/j.matt.2021.01.012
  3. F. Li, Q. Liu, J. Hu, Y. Feng, P. He, and J. Ma, Nanoscale, 2019, 11(33), 15418-15439. https://doi.org/10.1039/C9NR04415A
  4. S. Feng, Z.-H. Fu, X. Chen, and Q. Zhang, InfoMat., 2022, 4(3), e12304.
  5. R. Mori, J. Solid State Electrochem., 2023, 27, 813-839.
  6. Y. Li, J. G. Shapter, H. Cheng, G. Xu, and G. Gao, Particuology, 2021, 58, 1-15.
  7. L. Yang, Q. Li, Y. Wang, Y. Chen, X. Guo, Z. Wu, G. Chen, B. Zhong, W. Xiang, and Y. Zhong, Ionics, 2020, 26(11), 5299-5318. https://doi.org/10.1007/s11581-020-03767-3
  8. A. Fu, C. Wang, F. Pei, J. Cui, X. Fang, and N. Zheng, Small, 2019, 15(10), 1804786.
  9. Y. Zhang, Z. Gao, N. Song, J. He, and X. Li, Mater. Today Energy, 2018, 9, 319-335. https://doi.org/10.1016/j.mtener.2018.06.001
  10. F. Wang, Y. Han, X. Feng, R. Xu, A. Li, T. Wang, M. Deng, C. Tong, J. Li, and Z. Wei, Int. J. Mol. Sci., 2023, 24(8), 7291.
  11. Y. Yang, Z. Wang, G. Li, T. Jiang, Y. Tong, X. Yue, J. Zhang, Z. Mao, W. Sun, and K. Sun, J. Mater. Chem. A, 2017, 5(7), 3140-3144. https://doi.org/10.1039/C6TA09322A
  12. L. P. Zhang, Y. F. Wang, S. Q. Gou, and J. H. Zeng, J. Phys. Chem. C, 2015, 119(52), 28721-28727. https://doi.org/10.1021/acs.jpcc.5b08934
  13. H. Wang, T. Zhou, D. Li, H. Gao, G. Gao, A. Du, H. Liu, and Z. Guo, ACS Appl. Mater. Interfaces, 2017, 9(5), 4320-4325. https://doi.org/10.1021/acsami.6b07961
  14. E. H. M. Salhabi, J. Zhao, J. Wang, M. Yang, B. Wang, and D. Wang, Angew. Chem. Int. Ed., 2019, 58(27), 9078-9082. https://doi.org/10.1002/anie.201903295
  15. T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, and J. Xiong, Adv. Energy Mater., 2016, 7(4), 1601843.
  16. R. Fang, S. Zhao, Z. Sun, D.-W. Wang, R. Amal, S. Wang, H.-M. Cheng, and F. Li, Energy Stor. Mater., 2018, 10, 56-61. https://doi.org/10.1016/j.ensm.2017.08.005
  17. Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.-M. Cheng, and F. Li, Nat. Commun., 2017, 8, 14627.
  18. F. Sun, J. Wang, D. Long, W. Qiao, L. Ling, C. Lv, and R. Cai, J. Mater. Chem. A, 2013, 1(42), 13283-13289. https://doi.org/10.1039/c3ta12846f
  19. Z. Li, B. Y. Guan, J. Zhang, and X. W. Lou, Joule, 2017, 1(3), 576-587. https://doi.org/10.1016/j.joule.2017.06.003
  20. X. Ji, S. Evers, R. Black, and L. F. Nazar, Nat. Commun., 2011, 2, 325.
  21. H. Pan, X. Huang, R. Zhang, T. Zhang, Y. Chen, T. K. A. Hoang, and G. Wen, J. Solid State Electrochem., 2018, 22(6), 3557-3568. https://doi.org/10.1007/s10008-018-4059-z
  22. Z. Li, N. Zhang, Y. Sun, H. Ke, and H. Cheng, J. Energy Chem., 2017, 26(6), 1267-1275. https://doi.org/10.1016/j.jechem.2017.09.020
  23. B.-J. Lee, T.-H. Kang, H.-Y. Lee, J. S. Samdani, Y. Jung, C. Zhang, Z. Yu, G.-L. Xu, L. Cheng, S. Byun, Y. M. Lee, K. Amine, and J.-S. Yu, Adv. Energy Mater., 2020, 10(22), 1903934.
  24. D. Losic, J. G. Mitchell, and N. H. Voelcker, Adv. Mater., 2009, 21(29), 2947-2958. https://doi.org/10.1002/adma.200803778
  25. D. Losic, K. Short, J. G. Mitchell, R. Lal, and N. H. Voelcker, Langmuir, 2007, 23(9), 5014-5021. https://doi.org/10.1021/la062666y
  26. M. Sumper, Science, 2002, 295(5564), 2430-2433. https://doi.org/10.1126/science.1070026
  27. N. L. Rosi, C. S. Thaxton, and C. A. Mirkin, Angew. Chem. Int. Ed., 2004, 43(41), 5500-5503. https://doi.org/10.1002/anie.200460905
  28. T. Coradin and J. Livage, Mater. Sci. Eng. C, 2005, 25(2), 201-205. https://doi.org/10.1016/j.msec.2005.01.010
  29. J. Y. Koh, M.-S. Park, E. H. Kim, T. J. Kim, S. Kim, K. J. Kim, Y.-J. Kim, and Y. Jung, J. Electrochem. Soc., 2014, 161(14), A2117-A2120. https://doi.org/10.1149/2.0551414jes
  30. C.-H. Chang, S.-H. Chung, and A. Mamthiram, J. Mater. Chem. A, 2015, 3, 18829-18834. https://doi.org/10.1039/C5TA05053G
  31. H. Li, S. Ma, J. Li, F. Liu, H. Zhou, Z. Huang, S. Jiao, and Y. Kuang, Energy Stor. Mater., 2020, 26, 203-212. https://doi.org/10.1016/j.ensm.2020.01.002
  32. Y. Zhao, C. Fang, G. Zhang, D. Hubble, A. Nallapaneni. C. Zhu, Z. Zhao, Z. Liu, J. Lau, Y. Fu, and G. Liu, Front. Chem., 2020, 8, 484.
  33. J. H. Lee, J. Kang, S.-W. Kim, W. Halim, M. W. Frey, and Y. L. Joo, ACS Omega, 2018, 3(12), 16465-16471. https://doi.org/10.1021/acsomega.8b02551
  34. Z. W. Seh, J. H. Yu, W. Li, P.-C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, and Y. Cui, Nat. Commun., 2014, 5, 5017.
  35. X. Tao, J. Wang, C. Liu, H. Wang, H. Yao, G. Zheng, Z. W. Seh, Q. Cai, W. Li, G. Zhou, C. Zu, and Y. Cui, Nat. Commun., 2016, 7, 11203.