DOI QR코드

DOI QR Code

MOF-based Sensing Materials for Non-enzymatic Glucose Sensors

  • Jingjing Liu (School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China) ;
  • Xiaoting Zha (School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China) ;
  • Yajie Yang (School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China)
  • Received : 2023.07.17
  • Accepted : 2023.09.08
  • Published : 2024.02.29

Abstract

Diabetes mellitus is one of the common chronic diseases, seriously threating to human health. The continuous monitoring of blood glucose concentration can effectively prevent diabetic diseases. The sensing performance of glucose non-enzymatic sensors is mainly determined by working electrode materials. Metal-organic frameworks (MOFs) are recognized as promising candidate for glucose sensor application, due to its large surface areas, ordered porous structure and nearly infinite designability. In this review, the sensing performance, research progress and future challenge of non-enzymatic glucose sensors based on MOF-based materials in recent years are presented. We hope that this review would provide valuable technology guidance for high performance non-enzymatic glucose sensors based on MOFs.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (61971112), Chongqing Postdoctoral Science Special Foundation (Xm2017051), Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0824), Chongqing Scientific Research Fund of Chongqing Municipal Education Commission (No. KJQN201901304), and Chongqing Undergraduate Innovation and Entrepreneurship Training Program (No. 201910642029).

References

  1. D. W. Hwang, S. Lee, M. Seo, and T. D. Chung, Anal. Chim. Acta, 2018, 1033, 1-34. https://doi.org/10.1016/j.aca.2018.05.051
  2. K. Dhara and D. R. Mahapatra, Microchim. Acta, 2017, 185, 49.
  3. M. Wei, Y. Qiao, H. Zhao, J. Liang, T. Li, Y. Luo, S. Lu, X. Shi, W. Lu, and X. Sun, Chem. Commun., 2020, 56, 14553-14569. https://doi.org/10.1039/D0CC05650B
  4. S. A. Shafiee, S. C. Perry, H. H. Hamzah, M. M. Mahat, F. A. Al-lolage, and M. Z. Ramli, Electrochem. Commun., 2020, 120, 106828.
  5. R. Ahmad, M. Khan, P. Mishra, N. Jahan, M. A. Ahsan, I. Ahmad, M. R. Khan, Y. Watanabe, M. A. Syed, H. Furukawa, and A. Khosla, J. Electrochem. Soc., 2021, 168, 017501.
  6. H. Jia, N. Shang, Y. Feng, H. Ye, J. Zhao, H. Wang, C. Wang, and Y. Zhang, J. Colloid Interface Sci., 2021, 583, 310-320. https://doi.org/10.1016/j.jcis.2020.09.051
  7. G. A. Naikoo, H. Salim, I. U. Hassan, T. Awan, F. Arshad, M. Z. Pedram, W. Ahmed, and A. Qurashi, Front. Chem., 2021, 9, 748957.
  8. J. R. Sempionatto, J.-M. Moon, and J. Wang, ACS Sens., 2021, 6(5), 1875-1883. https://doi.org/10.1021/acssensors.1c00139
  9. M. Bariya, H. Y. Y. Nyein, and A. Javey, Nat. Electron., 2018, 1, 160-171. https://doi.org/10.1038/s41928-018-0043-y
  10. H. Lee, Y. J. Hong, S. Baik, T. Hyeon, and D.-H. Kim, Adv. Healthc. Mater., 2018, 7(8), 1701150. https://doi.org/10.1002/adhm.201701150
  11. R. Sakamoto, N. Fukui, H. Maeda, R. Toyoda, S. Takaishi, T. Tanabe, J. Komeda, P. Amo-Ochoa, F. Zamora, and H. Nishihara, Coord. Chem. Rev., 2022, 472, 214787.
  12. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin, and J. T. Hupp, J. Am. Chem. Soc., 2012, 134(36), 15016-15021. https://doi.org/10.1021/ja3055639
  13. A. Mahmood, W. Guo, H. Tabassum, and R. Zou, Adv. Energy Mater., 2016, 6(17), 1600423.
  14. B. E. Lewis, N. Choytun, V. L. Schramm, and A. J. Bennet, J. Am. Chem. Soc., 2006, 128(15), 5049-5058. https://doi.org/10.1021/ja0573054
  15. F. Largeaud, K. B. Kokoh, B. Beden, and C. Lamy, J. Electroanal. Chem., 1995, 397(1-2), 261-269. https://doi.org/10.1016/0022-0728(95)04139-8
  16. B. Lertanantawong, A. P. O'Mullane, W. Surareungchai, M. Somasundrum, L. D. Burke, and A. M. Bond, Langmuir, 2008, 24(6), 2856-2868. https://doi.org/10.1021/la702454k
  17. L. D. Burke, Electrochim. Acta, 1994, 39(11-12), 1841-1848. https://doi.org/10.1016/0013-4686(94)85173-5
  18. Y. Wang, R. Jin, N. Sojic, D. Jiang, and H.-Y. Chen, Angew. Chem. Int. Ed. Engl., 2020, 59(26), 10416-10420. https://doi.org/10.1002/anie.202002323
  19. R. D. Munje, S. Muthukumar, and S. Prasad, Sens. Actuators B: Chem., 2017, 238, 482-490. https://doi.org/10.1016/j.snb.2016.07.088
  20. W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, Nature, 2016, 529, 509-514. https://doi.org/10.1038/nature16521
  21. J. Zhu, S. Liu, Z. Hu, X. Zhang, N. Yi, K. Tang, M. G. Dexheimer, X. Lian, Q. Wang, J. Yang, J. Gray, and H. Cheng, Biosens. Bioelectron., 2021, 193, 113606.
  22. M. Wei, Y. Qiao, H. Zhao, J. Liang, T. Li, Y. Luo, S. Lu, X. Shi, W. Lu, and X. Sun, Chem. Commun., 2020, 56, 14553-14569. https://doi.org/10.1039/D0CC05650B
  23. X. Zha, W. Yang, L. Shi, Y. Li, Q. Zeng, J. Xu, and Y. Yang, ACS Appl. Mater. Interfaces, 2022, 14, 37843-37852. https://doi.org/10.1021/acsami.2c10760
  24. S. Hu, Y. Lin, J. Teng, W.-L. Wong, and B. Qiu, Mikrochim. Acta, 2020, 187, 670.
  25. T. Meng, N. Shang, J. Zhao, M. Su, C. Wang, and Y. Zhang, J. Colloid Interface Sci., 2021, 589, 135-146. https://doi.org/10.1016/j.jcis.2020.12.119
  26. M. A. Kachouei, S. Shahrokhian, and M. Ezzati, Sens. Actuators B: Chem., 2021, 344, 130254.
  27. X. Li, H. Dong, Q. Fan, K. Chen, D. Sun, T. Hu, and Z. Ni, Microchem. J., 2022, 179, 107468.
  28. K. Kim, J. Kim, and Y.-S. Bae, ACS Sustain. Chem. Eng., 2022, 10(35), 11702-11709. https://doi.org/10.1021/acssuschemeng.2c04306
  29. P. Li, Y. Bai, G. Zhang, X. Guo, X. Meng, and H. Pang, Inorg. Chem. Front., 2022, 9, 5853-5861. https://doi.org/10.1039/D2QI01738E
  30. A. Vignesh, P. Vajeeston, M. Pannipara, A. G. AlSehemi, Y. Xia, and G. G. kumar, Chem. Eng. J., 2022, 430, 133157.
  31. H. Jia, N. Shang, Y. Feng, H. Ye, J. Zhao, H. Wang, C. Wang, and Y. Zhang, J. Colloid Interface Sci., 2021, 583, 310-320. https://doi.org/10.1016/j.jcis.2020.09.051
  32. G. Li, G. Xie, D. Chen, C. Gong, X. Chen, Q. Zhang, B. Pang, Y. Zhang, C. Li, J. Hu, Y. Chen, L. Yu, and L. Dong, Appl. Surf. Sci., 2022, 585, 152683.
  33. J. Ding, L. Zhong, X. Wang, L. Chai, Y. Wang, M. Jiang, T.-T. Li, Y. Hu, J. Qian, and S. Huang, Sens. Actuators B: Chem., 2020, 306, 127551. https://doi.org/10.1016/j.snb.2019.127551
  34. Y. Zhou, Q. Hu, F. Yu, G.-Y. Ran, H.-Y. Wang, N. D. Shepherd, D. M. D'Alessandro, M. Kurmoo, and J.-L. Zuo, J. Am. Chem. Soc., 2020, 142(48), 20313-20317. https://doi.org/10.1021/jacs.0c09009
  35. Q. Zhu, S. Hu, L. Zhang, Y. Li, C. Carraro, R. Maboudian, W. Wei, A. Liu, Y. Zhang, and S. Liu, Sens. Actuators B: Chem., 2020, 313, 128031.
  36. C. Wei, X. Li, W. Xiang, Z. Yu, and Q. Liu, Sens. Actuators B: Chem., 2020, 324, 128773. https://doi.org/10.1016/j.snb.2020.128773
  37. D. Chu, F. Li, X. Song, H. Ma, L. Tan, H. Pang, X. Wang, D. Guo, and B. Xiao, J. Colloid Interface Sci., 2020, 568, 130-138. https://doi.org/10.1016/j.jcis.2020.02.012
  38. C. Chen, D. Xiong, M. Gu, C. Lu, F.-Y. Yi, and X. Ma, ACS Appl. Mater. Interfaces, 2020, 12(31), 35365-35374. https://doi.org/10.1021/acsami.0c09689
  39. Y. Zhang, Y.-Q. Liu, Y. Bai, W. Chu, and J. Sh, Sens. Actuators B: Chem., 2020, 309, 127779. https://doi.org/10.1016/j.snb.2020.127779
  40. H. Zhao, L. Tang, M. Zhou, K. Li, J. Hu, Y. Zhao, and Z. Cai, J. Mater. Chem. C, 2022, 10, 2988-2997.  https://doi.org/10.1039/D1TC04420F