DOI QR코드

DOI QR Code

혼합형 메타휴리스틱 접근법을 이용한 지속가능한 폐쇄루프 공급망 네트워크 모델: 국내 모바일폰 산업을 중심으로

Sustainable Closed-loop Supply Chain Model using Hybrid Meta-heuristic Approach: Focusing on Domestic Mobile Phone Industry

  • 윤영수 (조선대학교 경상대학 경영학부)
  • 투고 : 2023.11.16
  • 심사 : 2023.12.15
  • 발행 : 2024.02.29

초록

본 연구는 국내 모바일폰 산업을 위한 지속가능한 폐쇄루프 공급망 (Sustainable closed-loop supply chain: SCLSC) 네트워크 모델을 제안한다. 제안된 SCLSC 네트워크 모델의 지속 가능성을 위해 경제적, 환경적, 사회적 요인들이 각각 고려된다. 이들 세 가지 요인들은 SCLSC 네트워크 모델의 각 단계에서 고려되는 설비의 구축 및 운영으로부터 발생하는 총비용 최소화, CO2 방출 총량 최소화, 사회적 영향력 최대화를 목표로 한다. 이러한 목표들은 SCLSC 네트워크의 모델링 단계에서 각각 개별적인 목적함수로 고려되어야 하기 때문에 SCLSC 네트워크 모델은 다목적 최적화 문제로 간주할 수 있다. SCLSC 네트워크 모델은 수리모델을 사용하여 표현되며, 혼합형 메타휴리스틱 접근법을 수리모델에 적용하여 그 해를 구한다. 수치실험에서는 제안된 혼합형 메타휴리스틱 접근법의 수행도가 기존의 메타휴리스틱 접근법들의 수행도와 비교된다. 실험결과는 본 연구에서 제안된 혼합형 메타휴리스틱 접근법이 기존의 메타휴리스틱 접근법들과 비교하여 더 뛰어난 수행도를 보여주는 것을 알 수 있다.

In this paper, a sustainable closed-loop supply chain (SCLSC) network model is proposed for domestic mobile phone industry. Economic, environmental and social factors are respectively considered for reinforcing the sustainability of the SCLSC network model. These three factors aim at minimizing total cost, minimizing total amount of CO2 emission, and maximizing total social influence resulting from the establishment and operation of facilities at each stage of the SCLSC network model. Since they are used as each objective function in modeling, the SCLSC network model can be a multi-objective optimization problem. A mathematical formulation is used for representing the SCLSC network model and a hybrid meta-heuristic approach is proposed for efficiently solving it. In numerical experiment, the performance of the proposed hybrid meta-heuristic approach is compared with those of conventional meta-heuristic approaches using some scales of the SCLSC network model. Experimental results shows that the proposed hybrid meta-heuristic approach outperforms conventional meta-heuristic approaches.

키워드

과제정보

이 논문은 2023학년도 조선대학교 학술연구비의 지원을 받아 연구되었음.

참고문헌

  1. Ahmadi, S., and Amin, S. H. (2019). An integrated chance-constrained stochastic model for a mobile phone closed-loop supply chain with supplier selection, Journal of Cleaner Production, 226: 988-1003. https://doi.org/10.1016/j.jclepro.2019.04.132
  2. Anudari, C., and Yun, Y. S. (2021). Supply chain network model considering supply disruption in assembly industry: hybrid genetic algorithm approach, Journal of the Korea Industrial Information Systems Research, 26(3): 9-2.
  3. Catalan, M., and Kotzab, H. (2003). Assessing the responsiveness in the Danish mobile phone supply chain, International Journal of Physical Distribution & Logistics Management, 33(8): 668-685. https://doi.org/10.1108/09600030310502867
  4. Chuluunsukh, A., Chen, X., and Yun, Y. S. (2018). Optimization of integrated supply chain network problem using hybrid genetic algorithm approach, International Journal of Engineering and Technology, 7(1.1): 1-8.
  5. Chuluunsukh, A. (2020). Design and Implementation of Sustainable Closed-Loop Supply Chain Model for Mobile Phone, Ph. D. Dissertation, Graduate School of Chosun University.
  6. Eskandarpour, M., Dejax, P., Miemczyk, J., Peton, O. (2015). Sustainable supply chain network design: An optimization-oriented review, Omega, 54: 11-31. https://doi.org/10.1016/j.omega.2015.01.006
  7. Fahimnia, B., Sarkis, J., Dehghanian, F., and Banihashemi, N. (2013). The impact of carbon pricing on a closed-loop supply chain: an Australian case study, Journal of Cleaner Production, 59: 210-225.
  8. Gen, M., and Cheng, R. (2000). Genetic Algorithms and Engineering Optimization, John-Wiley & Sons.
  9. Gen, M., Lin, L., Yun, Y. S., and Inoue, H. (2018). Recent advances in hybrid priority based genetic algorithms for logistics and SCM network design, Computers & Industrial Engineering, 115: 394-412.
  10. Ishibuchi, H., and Murata, T. (1998). A multi objective genetic algorithm and its application to flowshop scheduling, IEEE Transaction on Systems, Man and Cybernetics, 28(3): 392-403. https://doi.org/10.1109/5326.704576
  11. Jang, Y. C., and Kim, M. (2010). Management of used & end-of-life mobile phone in Korea, A Review of Resource Conserving Recycle, 55: 11-19.
  12. John S. T. Sridharam, R., and Ram Kumar, P. N. (2018). Reverse logistics network design: A case of mobile phones and digital cameras, International Journal of Advanced Manufacturing Technology, 94: 615-631. https://doi.org/10.1007/s00170-017-0864-2
  13. Kanagaraj, G., Phonnambalm, S. G., and Jawahar, N. (2013). A hybrid cuckoo search and genetic algorithm for reliability redundancy allocation problems, Computers & Industrial Engineering, 66: 1115-1124.
  14. Kim, K. B., and Jung, B. J. (2007). Eco-friendly reverse supply chain network design and strategic model for used cellular phones, Spring Joint Conference on Korean Operations Research and Management Science Society and Korean Institute of Industrial Engineer.
  15. Min, H., Ko, C.S., and Ko, H.J. (2006). The spatial and temporal consolidation of returned products in a closed-loop supply chain network, Computers & Industrial Engineering, 51: 309-320. https://doi.org/10.1016/j.cie.2006.02.010
  16. Ozceylan, E., Demirel, N., Cetinkaya, C., and Demirel, E. (2017). A closed loop supply chain network design for automotive industry in Turkey, Computers & Industrial Engineering, 113: 729-745.
  17. Paksoy. T., Bektas. T., and Ozceylan. E. (2011). Operational and environmental performance measures in a multi-product closed-loop supply chain, Transportation Research. P art E, 47: 532-546.
  18. Sahebjamnia, N., Fathollahi-Fard, A. M., and Hajiaghaei-Keshteli, M. (2018). Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-scale networks, Journal of Cleaner Production, 196: 273-296. https://doi.org/10.1016/j.jclepro.2018.05.245
  19. Savaskan, R. C., Bhattacharya, S., and Van Wassenhove, L. V. (2004). Closed loop supply chain models with product remanufacturing, Management Science, 50: 239-252. https://doi.org/10.1287/mnsc.1030.0186
  20. Scanlon, R. (2009). Aligning product and supply chain strategies in the mobile phone industry, Master Thesis, MIT, USA.
  21. Son, D., Kim, S., Park, H., and Jeong, B. (2018). Closed-loop supply chain planning model of rare metals, Sustainability, 10, 1061.
  22. Talaei, M., Moghaddam, B. F., Pishvaee, M. S., Bozorgi-Amiri, A., and Gholamnejad, S. A. (2016). A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry, Journal of Cleaner Production, 113: 662-673. https://doi.org/10.1016/j.jclepro.2015.10.074
  23. Wang, H. F., and Hsu, H. W. (2010). A closed-loop logistic model with a spanning tree based genetic algorithm, Computers & Operations Research, 37(2): 376-389. https://doi.org/10.1016/j.cor.2009.06.001
  24. Wu, C., Shi, Y., Arthanari, T., Gao, Y., and Li, X. (2023). Examining the Chinese mobile phone industry in the reverse supply chains, Computers & Industrial Engineering, 182, 109407.
  25. Yun, Y. S. (2022). GA-VHS-HC approach for engineering design optimization problems, Journal of the Korea Industrial Information Systems Research, 27(1): 37-48.
  26. Yun, Y. S., Anudari, C., and Xing, C. (2017). Adaptive hybrid genetic algorithm approach for optimizing closed-loop supply chain model, Journal of the Korea Industrial Information Systems Research, 22(2): 79-89. https://doi.org/10.9723/jksiis.2017.22.2.079
  27. Yun, Y. S., Chuluunsukh, A., and Chen X. (2018). Hybrid genetic algorithm for optimizing closed-loop supply chain model with direct shipment and delivery, New P hysics: Sae Mulli, 68(6): 683-692. https://doi.org/10.3938/NPSM.68.683
  28. Yun, Y. S., Chuluunsukh, A., and Gen, M. (2020). Sustainable closed-loop supply chain design problem: a hybrid genetic algorithm approach, Mathematics, 8(1): 84.
  29. Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., and Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty, Transportation Research Part E, E89: 182-214.