
JKSCI
한국컴퓨터정보학회논문지

Journal of The Korea Society of Computer and Information

Vol. 29 No. 2, pp. 127-136, February 2024

https://doi.org/10.9708/jksci.2024.29.02.127

Hierarchical NFT using Parent-Child Structure

1)JongWook Bae*, Nitin Bhagat*, Su-Hyun Lee*

*Postdoctoral Researcher, Dept. of Computer Engineering, Changwon National University, Changwon, Korea

*Student, Dept. of Computer Engineering, Changwon National University, Changwon, Korea

*Professor, Dept. of Computer Engineering, Changwon National University, Changwon, Korea

[Abstract]

This paper presents a novel method for minting hierarchical Non-Fungible Tokens(NFTs) via a

parent-child structure. In contrast to existing NFT structures, our proposed model enables an NFT to act

as a parent, creating child NFTs and distributing ownership stakes among them. These child NFTs are

recursively structured, allowing them to generate their own descendants. The existing structure of NFTs

does not inherently allow for fractional ownership. However, our proposed hierarchical model provides a

feasible solution to this restriction. By dividing an NFT into multiple child NFTs, each with its own

unique identity, we facilitate the detailed division of an asset, thereby making fractional ownership

possible. In conclusion, the hierarchical NFT model proposed in this paper offers a promising solution

to the challenges of fractional ownership in the digital asset arena. By enabling the detailed division of

NFTs through a parent-child structure, we anticipate a future where digital assets can be owned and

traded more flexibly and transparently.

▸Key words: Hierarchical Non-Fungible Tokens, Parent-Child Structure, Klaytn, multiple child NFTs

[요 약]

본 논문은 부모-자식 구조를 통해 계층적 NFT(Non-Fungible Token)를 발행하는 새로운 방법을 제

시한다. 기존 NFT 구조와 달리 우리가 제안한 모델은 NFT가 부모 NFT 역할을 하여 자식 NFT를 생

성하고 이들 사이에 소유권 지분을 분배할 수 있도록 한다. 자식 NFT는 재귀적으로 구조화되어 자

체 자손을 생성할 수 있다. NFT의 기존 구조는 본질적으로 부분 소유권을 허용하지 않는다. 그러나

우리가 제안한 계층적 모델은 이러한 제한에 대한 실행 가능한 솔루션을 제공한다. NFT를 각각 고

유한 ID를 가진 여러 자식 NFT로 분할함으로써 자산의 분할을 용이하게 하여 부분 소유권을 가능하

게 한다. 결론적으로, 본 논문에서 제안된 계층적 NFT 모델은 디지털 자산 분야에서 부분 소유권 문

제에 대한 솔루션을 제공한다. 부모-자식 구조를 통해 NFT의 세부적인 분할을 가능하게 함으로써

디지털 자산을 보다 유연하고 투명하게 소유하고 거래할 수 있는 미래를 기대한다.

▸주제어: 계층형 NFT, 부모-자식 구조, 클래이튼, 다중 자식 NFT

∙First Author: JongWook Bae, Corresponding Author: Su-Hyun Lee
 *JongWook Bae (bae@cwnu.ac.kr), Dept. of Computer Engineering, Changwon National University
 *Nitin Bhagat (bhagatnitin312@gmail.com), Dept. of Computer Engineering, Changwon National University
 *Su-Hyun Lee (sleepl@changwon.ac.kr), Dept. of Computer Engineering, Changwon National University
∙Received: 2024. 01. 29, Revised: 2024. 02. 14, Accepted: 2024. 02. 19.

Copyright ⓒ 2024 The Korea Society of Computer and Information
 http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

128 Journal of The Korea Society of Computer and Information

I. Introduction

The introduction of Non-Fungible Tokens (NFTs)

has revolutionized the way we perceive digital

assets, providing a unique identity to each asset on

the blockchain. While NFTs have been largely

utilized in the domain of digital art, their potential

use-cases extend far beyond. This paper explores

the innovative concept of hierarchical NFT

generation, a novel approach that facilitates

fractional ownership and trading of assets[1-2].

Fractional ownership, enabled by dividing an

asset into multiple unique entities, provides an

opportunity for multiple individuals to hold a stake

in a single high-value asset. This concept has been

prevalent in traditional sectors like real estate and

business, and now, the advent of NFTs brings this

concept into the digital realm. However, the

current structure of NFTs does not inherently

support fractional ownership[3]. Herein lies the

significance of hierarchical NFT generation.

Hierarchical NFTs involve structuring NFTs in a

hierarchical manner, where each NFT can be

divided into multiple sub-NFTs, each with its own

unique identity[4]. We implement a hierarchical

structure of NFT by storing child and parent IDs

and dividing ownership. This structure allows for

the granular division of an asset, enabling

fractional ownership. Moreover, each fraction can

be independently traded, bringing in a new

dimension to the NFT marketplace.

This paper, explores the methodology of creating

hierarchical NFTs and the mechanisms for

fractional ownership and trading. It further

explores the potential benefits, challenges, and

implications of this concept in various sectors.

Chapter 2 describes the theoretical background,

explains the hierarchical NFT method proposed in

Chapter 3 and 4, and concludes in Chapter 5.

II. Theoretical Background

Non-Fungible Tokens (NFTs) represent a novel

application of blockchain technology, embodying

unique digital assets with immutable and verifiable

ownership. Unlike fungible tokens like Bitcoin or

Ethereum, each NFT is distinct and carries unique

information and value. They are built on

Ethereum's ERC-721 and ERC-1155 standards,

which enable the creation and exchange of these

unique tokens on the blockchain. ERC-721 is a

standard for Non-Fungible Tokens, while ERC-1155

accommodates both Fungible and Non-Fungible

Tokens[5]. NFTs have been increasingly recognized

in various digital platforms and sectors, including

digital art, gaming, and virtual real estate, due to

their capacity to provide digital scarcity,

provenance, and ownership of unique digital

assets[6].

The choice to utilize the Klaytn Improvement

Proposal-17 (KIP-17) standard as the foundational

framework for our research is grounded in its

distinct advantages over other blockchain

protocols. KIP-17, developed by Ground X, a

subsidiary of South Korea's internet Kakao, offers a

more scalable, efficient, and user-friendly platform

for the creation and transaction of NFTs. Unlike

other standards, such as Ethereum's ERC-721 and

ERC-1155, KIP-17 addresses several challenges,

notably high gas fees and network congestion,

thereby offering a more viable platform for broader

NFT adoption. Our study, therefore, seeks to

explore the uncharted territories of NFTs,

leveraging the unique capabilities of KIP-17[7].

Many NFTs can be difficult to purchase due to

their high cost, which could lead to lower liquidity

of NFTs. Furthermore, when a single high-value

asset is represented as an NFT, the risk associated

with the fluctuation of that asset's value increases.

In order to address these issues, a method of

fractional ownership of NFTs is considered. By

dividing the NFT into smaller units, it is possible to

invest at a lower price. This approach will enhance

Hierarchical NFT using Parent-Child Structure 129

the liquidity of NFTs and diversify investment

risk[8-9].

However, this method also presents challenges.

With the fractionalization of NFT ownership, the

management of each fraction's ownership rights

can become more complex. Furthermore,

accurately measuring the value of each fraction

and conducting trades based on this can be

difficult. To address these issues, the concept of

hierarchical NFTs was introduced. Hierarchical

NFTs operate by creating multiple layers of NFTs,

with each layer's NFT interconnected with others.

This allows for the clear definition and

management of each NFT's ownership rights and

value, effectively addressing the issues of trading

and liquidity associated with fractionalized NFTs.

Gebreab and colleagues proposed an NFT-based

solution for managing refurbished medical devices

and addressing concerns about quality and safety.

Their approach leverages dynamically configurable

NFTs in a parent-child hierarchy to track

modifications stages, and non-transferable NFTs to

ensure trustworthiness. The proposed solution has

limitations as it relies on soulbound tokens to

authenticate modification activities, which can be

susceptible to fraudulent activities[10]. Noh and

Shin proposed a method of managing copyright

works in a virtual space using hierarchical NFTs.

In this method, the virtual performance is

organized as the Root Node, and each copyright

work is set up as a Leaf Node, allowing for the

management of copyrighted works through a

hierarchically structured NFT all at once. However,

this method utilizes the interface provided by

ERC-6150 to maintain the hierarchical

relationship[11].

The hierarchical NFT we propose begins with the

creation of an NFT for a basic asset. This NFT then

performs the role of a parent, creating child NFTs

and distributing its ownership stakes to them.

These child NFTs, in turn, possess a recursive

structure that allows them to generate their own

offspring. Using this hierarchical NFT structure,

digital asset ownership and liquidity can be

granularized. It also allows for effective

management of complex ownership structures. This

contributes to clearly defining the value of digital

assets, transparently managing ownership, and

maximizing the efficiency of blockchain technology.

III. Desing of the Proposed Scheme

1. Block diagram of our platform

The overarching architecture of our system is

shown in Fig. 1. Users can upload their digital

content using the platform's dedicated upload

interface and provide relevant details about the

content[12].

Upon receiving the user's input, our server

transfers the content to the InterPlanetary File

System(IPFS) and creates a metadata file containing

the Content Identifier(CID) and user-provided

details. The metadata file is also uploaded to IPFS,

generating a hash address that becomes the

Uniform Resource Identifier(URI) of the NFT,

providing a unique digital footprint for each asset.

This token URI is used by our smart contract to

generate the NFT.

Fig. 1. Block diagram of NFT

2. Parent-child structure

Our platform is based on a smart contract

named 'CWNFT'. This contract inherits from KIP17

and uses Counters to track token IDs and store

130 Journal of The Korea Society of Computer and Information

tokenURIs. It includes a generator function for

minting KIP17 tokens and methods for querying

and managing NFTs providing a complete

framework for creating, tracking, and managing

NFTs.

Fig. 2. Content and metadata upload result

Our platform has an innovative feature called the

'Heiric' structure, which implement a hierarchical

structure in NFTs. In this structure, 'pid'

represents the parent ID, mapping to the token ID

of the current NFT's parent, while 'cid' stores the

token IDs of the children NFTs of the current NFT.

Additionally, 'share' signifies the ownership

proportion associated with the relevant NFT. This

component is essential for establishing and

maintaining hierarchical relationships among NFTs

within our platform.

contract CWNFT is KIP17Enumerable {

Counters.Counter private _tokenIds;

mapping(uint =>string) public tokenURIs ;

mapping(uint256 => uint256) public nftPrices;

 uint256 [] public onSaleNfts;

struct Heiric {

 uint256 pid;

 uint256[] cid;

 uint8 share ;

 }

Heiric[] heiric ;

constructor() KIP17("CWNU_NFT", "CWNU"){ }

function tokenURI(uint _tokenId) { }

function mintParent(string memory _tokenURI) { }

function mintChild(uint parentId, uint8 _share) { }

}

The minting of NFTs, both parent and child, is

carried out using the 'mintParent()' and

'mintChild()' functions. When a parent NFT is

minted using the 'mintParent()' function, it is

assigned 100 percent ownership share. When

minting child NFTs, the 'mintChild()' function is

used, taking the parent ID and the ownership share

as arguments.

IV. Implementation of the Proposed

Scheme

1. Minting a parent NFT

As illustrated in <Fig. 3>, our platform's minting

page simplifies the NFT creation process for users.

The user-friendly interface enhances the NFT

creation experience, making it more accessible and

easy to use.

Users initiate the process by selecting their

digital content using the [Choose File] button and

then upload it to IPFS through Infura by clicking

the [Upload] button. This can only be done if the

user has registered the project ID and secret key

for IPFS in their INFURA account[13].

Fig. 3. Content and metadata upload result

After the user upload their data, they can log in

to their Kaikas wallet and click on the [Minting]

Hierarchical NFT using Parent-Child Structure 131

button. This action triggers the smart contract

within our system. The 'mintParent()' function

combines the unique token ID and the TokenURI to

mint an NFT. This function also increments the

token ID counter, assigns the tokenURI to the

corresponding token ID, and mints the NFT using

the _mint() function.

function mintParent(string memory _tokenURI)

payable public returns(uint256) {

_tokenIds.increment();

uint256 tokenId = _tokenIds.current();

tokenURIs[tokenId] = _tokenURI;

_mint(msg.sender, tokenId);

uint256[] memory cid = new uint256[](3);

 Heiric memory room = Heiric(0, cid, 100);

heiric.push(room);

return id;

}

To manage NFTs hierarchically, the 'Heiric'

structure is introduced. When a parent NFT is

initially minted by the ‘mintParent()’ function, it

does not have a parent or child. Therefore, 'pid' is

assigned a value of zero, and 'cid' is kept as an

initialized array. Since a parent NFT, at the point

of creation, holds the entire ownership share,

'share' is consequently set at 100 percent. Here,

the number of 'cid' elements is set to 3 to limit the

number of children to 2, and to store the number

of children in element 0. <Fig. 4> shows an example

of the attribute values in the ‘hieric’ structure of

token ID 4.

Fig. 4. Example of ‘heiric’ structure attribute values

After the NFT minting process is complete, users

can view and manage their minted NFTs on the "My

NFT" page as shown in <Fig. 5>. This feature allows

users to monitor and control their NFTs within our

system.

Fig. 5. Listed of created NFTs

The ‘getNFTs()’ function retrieves a list of NFTs

owned by a specific user. It fetches the ID, token

URI, price, and ownership share for each token

owned by the user's address and stores them in the

'NFTs' structure. Here, 'ownership share' accesses

the 'hieric' structure with the token ID and

retrieves the value of the internal variable 'share'.

function getNFTs(address _owner) view virtual

public returns (NFTs[] memory) {

uint256 total = balanceOf(_owner);

NFTs[] memory nfts = new NFTs[](total);

for(uint256 i = 0; i < total; i++) {

uint256 id = tokenOfOwnerByIndex(_owner, i);

string memory uri = tokenURI(id);

nfts[i] = NFTs(id, uri, nftPrices[id], heiric[id].share);

}

return nfts;

}

2. Sharing child from a parent NFT

When you select an NFT on the "My NFT" page

and click the [Child] button, a pop-up window as

shown in <Fig. 6> will appear. Here, you can input

the desired ownership share. Clicking the [Add

child] button will create a child NFT, allowing for

the division of ownership shares.

132 Journal of The Korea Society of Computer and Information

Fig. 6. Popup for division of ownership share

Fig. 7. Example of child minting on My NFT page

<Fig. 7> shows an example of minting two child

NFT in Santa NFT and dividing the ownership

shares into 30% and 20%, respectively. Token IDs

4, 5, and 6 are all Santa NFTs, with ownership

stakes of 50%, 30%, and 20%, respectively.

function mintChild(uint parentId, uint8 _share)

payable public returns (uint256) {

require(ownerOf(parentId) == msg.sender,

"Caller is not nft token owner.");

tokenIds.increment();

uint256 childId = tokenIds.current();

tokenURIs[childId] = tokenURI(parentId);

_mint(msg.sender, childId);

uint256 i = ++heiric[parentId].cid[0] ;

heiric[parentId].cid[i] = childId ;

heiric[parentId].share -= _share;

uint256[] memory cid = new uint256[](3);

Heiric memory room = Heiric(parentId, cid, _share);

heiric.push(room);

return childId;

}

This is achieved using the ‘mintChild()’, which

increments the 'tokenIds' counter and assigns its

current value to 'childId'. This 'childId' is then

associated with the same token URI as the parent

token. The new child token is minted with the

‘_mint()’ function, assigning ownership to the

message sender.

The next steps involves updating the 'heiric'

structure to add the new child token ID to the 'cid'

array and deducting the '_share' value from the

parent token's owership share. Here, 'cid[0]'

represents the number of child NFTs, which

increases each time a new child token is minted,

allowing for easy tracking of the total number of

child NFTs associated with a specific parent NFT.

In conclusion, the function creates a new

instance of the 'Heiric' struct with the parent

token's ID, a new 'cid' array, and the '_share'

value. This instance is then appended to the

'heiric' array to store the hierarchy. The function

finally returns the 'childId', signifying the

successful minting of the child token.

3. Hierarchical structure of NFT

<Fig. 8> illustrates the hierarchical structure of

the NFT created in the example given in Fig. 5, and

exemplifies the values stored in the attributes of

the 'heiric' structure. The parent, Santa, was

minted fourth, therefore having a token ID of 4 and

is stored in the fourth index of the 'heiric' array.

Two children were minted, generating token IDs 5

and 6, correspondingly creating the 5th and 6th

indices in the 'heiric' array. Furthermore, the

values 5 and 6 are stored in 'cid[1]' and 'cid[2]' of

'heiric[4]', which represent Santa's children. Since

the children were assigned ownership shares of

30% and 20% respectively, Santa retains only 50%

of the ownership share. The 'pid' of 'heiric[5]' and

'heiric[6]' stores 4, which is the token ID of the

parent, Santa, and the ownership shares stored are

30% and 20% respectively. Finally, as no children

have been generated yet, the 'cid' array holds a

value of 0.

Hierarchical NFT using Parent-Child Structure 133

Fig. 8. Example of NFT hierarchy and the ‘hieric’

structure values

Fig. 9. Changes in hierarchy and structure values

If token IDs 5 and 6 mint child and share

ownership shares of 10% and 5%, respectively, the

hierarchy and attribute values will change as

shown in <Fig. 9>.

4. Register for sale

When you click the [Sale] button, the "Register

for Sale" form will appear as shown in <Fig. 10>. In

the dialog box that follows, enter the amount you

want to sell. Click the [Register] button to execute

the subsequent code.

Fig. 10. Sale registration pop-up

The function 'setSaleNFT()' takes two

parameters: '_id' representing the token ID of the

NFT, and '_price' representing the intended selling

price. It initiates by identifying the owner of the

NFT using the 'ownerOf()' function. Then, it

validates several conditions: 1) the caller of the

function (msg.sender) must be the owner of the

NFT, 2) the NFT must not already be listed for sale,

and 3) the owner must have authorized the sale of

the token. If all conditions are met, the NFT is

listed for sale with the price set to '_price', and its

token ID is added to the 'saleNfts' array. This

function ensures the legitimate and secure listing

of NFTs for sale.

function setSaleNft(uint256 _id, uint256 _price) public {

address nftOwner = ownerOf(_id);

require(nftOwner== msg.sender, "not nft token owner");

require(nftPrices[_id]==0, "nft is already on sale.");

require(isApprovedForAll(nftOwner, address(this)),

"nft owner did not approve token.");

nftPrices[_id] = _price;

saleNfts.push(_id);

}

After entering the desired sale amount shown in

<Fig. 10> and completing the sale registration, the

sale amount is displayed. The [Sale] button then

transforms into the [Cancel] button, as shown in

<Fig. 11>, allowing the user to cancel the sale

registration if they choose to do so at any point.

Fig. 11. Sales registration completed

5. Buy NFT

Subsequently, the "Buy NFT" interface, as shown

in <Fig. 12>, displays NFTs available for purchase

134 Journal of The Korea Society of Computer and Information

by their owners. Users can browse and buy their

preferred NFTs through this interface.

Fig. 12. Buy NFT Page

The ‘getSaleNfts()’ function retrieves details of all

NFTs currently listed for sale. It iterates over each

element in the ‘SaleNft’ array, fetching the

corresponding NFT's details such as token URI,

price, and the share of the ‘heiric’. These details

are stored as an NFT object in the ‘onSaleNfts’

array. The function provides a detailed snapshot of

all NFTs available for purchase at that moment.

function getSaleNfts() public view returns(Nfts[] memory) {

Nfts[] memory onSaleNfts = new Nfts[](SaleNfts.length);

 for(uint i = 0; i < onSaleNft.length; i ++){

uint id = SaleNft[i];

 onSaleNfts[i] = Nfts(id, tokenURI(id),

 nftPrices[id], heiric[id].share);

 }

return onSaleNfts;

}

When the user clicks the [Buy] button on the

purchase page a popup for purchasing the NFT will

appear, as shown in <Fig. 13>.

Fig. 13. Purchase pop-up

function buyNft(uint256 _id) public payable {

 address owner = ownerOf(_id);

 require(owner != msg.sender, "caller is nft owner.");

 require(isApprovedForAll(owner, address(this)),

"nft owner did not approve token.");

 payable(owner).transfer(msg.value);

 KIP17(address(this)).safeTransferFrom(

 nftOwner, msg.sender, _id);

 removeSaleNft(_id);

}

The ‘buyNft()’ function accepts the TokenId of

the NFT as an argument. It first identifies the

current owner of the NFT using the ‘ownerOf’

function. Then, it checks if the function caller is

not the current owner of the NFT and if the token

has been approved for sale by the owner. If these

conditions are met, the function transfers the

payment from the buyer to the current NFT owner.

The NFT is then transferred from the owner to the

buyer using the ‘safeTransferFrom()’ function of

the KIP17 protocol. Finally, the ‘removeSaleNft()’

function is called to remove the NFT from the sale

list, completing the purchase process.

The ‘removeSaleNft()’ function removes a specific

NFT by its Token id. It first sets the price of the

NFT to 0 to mark it for removal. Then, it iterates

over the ‘SaleNfts’ array, which contains the

unique identifiers of all NFTs currently on sale.

When it encounters an NFT with a price of zero, it

replaces that element with the last element in the

array and then removes the last element,

effectively eliminating the NFT from the sale list.

function removeSaleNft(uint256 _id) private {

nftPrices[_id] = 0;

for(uint256 i = 0; i<SaleNfts.length; i ++){

if (nftPrices[SaleNfts[i]] == 0){

SaleNfts[i] = SaleNfts[SaleNfts.length -1] ;

SaleNfts.pop();

}

}

}

Hierarchical NFT using Parent-Child Structure 135

When you click the [Cancel] button in <Fig. 11>,

the ‘removeSaleNft()’ function is called to remove

the NFT from the sale list.

6. Deletion of NFT

function burn(uint256 _id) public {

require(ownerOf(_id) == msg.sender,

"msg.sender is not the owner of the token");

require(heiric[_id].cid[0] == 0, "You have children");

uint256 pid = heiric[_id].pid;

if (pid != 0){

heiric[pid].share += heiric[_id].share ;

heiric[pid].cid[_id] = 0 ;

heiric[pid].cid[0]-- ;

}

else heiric[_id].share = 0 ;

_burn(_id);

removeSaleNft(_id);

}

When you click the [Del] button in <Fig. 11>, the

‘burn()’ function is called. The ‘burn()’ function is a

public function that allows the owner of a NFT to

permanently remove the NFT from existence. It

first checks if the caller of the function is the

owner of the token and if the token has any child.

If the token has a parent (pid != 0), the function

redistributes the owership share of the token to be

burned to its parent and updates the parent's child.

If the token does not have a parent, it simply sets

the owership share of the token to 0. After these

steps, it calls the ‘_burn()’ function to destroy the

token and the ‘removeSaleNft()’ function to remove

the token ID from the sale list.

V. Conclusions

In this paper, we proposed a new method for

creating hierarchical Non-Fungible Tokens(NFTs)

using a parent-child structure. This innovative

model allows an NFT to act as a parent, creating

child NFTs and distributing ownership stakes to

them. The child NFTs have a recursive structure

that allows them to generate their own offspring.

This was successfully implemented by storing

parent and child IDs in the 'hieric' structure and

dividing ownership shares during the NFT minting

process.

The current NFT structure does not inherently

support fractional ownership, but our proposed

hierarchical model presents a possible solution to

this limitation. By dividing an NFT into multiple

child NFTs, each with its own unique identity, we

enable the granular division of an asset, facilitating

fractional ownership.

Our hierarchical NFT model significantly

contributes to transparent and efficient valuation of

digital assets. It allows for clear delineation and

management of ownership, maximizing the

efficiency of blockchain technology.

In conclusion, the hierarchical NFT model we

propose offers a promising solution to the

challenges of fractional ownership in the digital

asset space. By enabling the granular division of

NFTs through a parent-child structure, we

anticipate a future where digital assets can be

owned and traded more flexibly and transparently.

The hierarchical NFTs we propose have a more

complex structure than traditional NFTs, leading to

increased costs due to the necessity of storing

additional ownership share data. Additionally, as

they are not based on a standardized protocol for

the hierarchization of NFTs, difficulties are

encountered in ensuring compatibility across

various platforms. In the future, we aim to create a

standardized protocol specifically for hierarchical

NFTs.

ACKNOWLEDGEMENT

This research was funded by convergence

research financial program for instructors,

graduate students and professors in 2023.

136 Journal of The Korea Society of Computer and Information

REFERENCES

[1] L. Kugler, "Non-fungible tokens and the future of art," Communicat

ions of the ACM, Vol. 64, No. 9, pp. 19-20, Sep. 2021. DOI:

10.1145/3474355

[2] K. Shah, U. Khokhariya, and S. Patel, "Smart contract-based dynam

ic non-fungible tokens generation system", Apr. 2023. DOI: 10.212

03/rs.3.rs-2796956/v1

[3] A. J. Abualhamayl, M. A. Almalki, and F. Al-Doghman, etc., "Tow

ards Fractional NFTs for Joint Ownership and Provenance in Real

Estate," 2023 IEEE International Conference on e-Business Engine

ering, pp. 143-148, Sydney, 20233 DOI: 10.1109/ICEBE59045.202

3.00022

[4] H. R. Hasan, M. Madine, I. Yaqoob, K. Salah, R. Jayaraman, and

D. Boscovic, "Using NFTs for ownership management of digital

twins and for proof of delivery of their physical assets," Future

Generation Computer Systems, Vol. 146, pp. 1-17, Sep. 2023. DOI:

10.1016/j.future.2023.03.047

[5] O. Marin, T. Cioara, L. Toderean, D. Mitrea, and I. Anghel, "Revie

w of Blockchain Tokens Creation and Valuation," Future Internet,

Vol. 15, No. 382, Nov. 2023. DOI: 10.3390/fi15120382

[6] LimeChain, ERC-721 vs ERC-1155, https://limechain.tech/blog/erc

-721-vs-erc-1155-ethereum-token-standards/

[7] Klaytn API service, KIP-17 API, https://www.klaytnapi.com/en/res

ource/openapi/kip17/reference/overview/

[8] Q. Wang, R. Li, Q. Wang, and S. Chen, "Non-fungible token (nft):

overview, evaluation, opportunities and challenges," ArXiv preprint

arXiv:2105.07447, May 2021. DOI: 10.48550/arxiv.2105.07447

[9] E. Sung, O. Kwon, and K. Sohn, "Nft luxury brand marketing

in the metaverse: leveraging blockchain-certified nfts to drive cons

umer behavior," Psychology & Marketing, Vol. 40, No. 11, pp.

2306-2325, Jun. 2023. DOI: 10.1002/mar.21854

[10] S. A. Gebreab, K. Salah, R. Jayaraman and J. Zemerly, "Trusted

Traceability and Certification of Refurbished Medical Devices Usi

ng Dynamic Composable NFTs," IEEE Access, Vol. 11, pp. 3037

3-30389, Mar. 2023, DOI: 10.1109/ACCESS.2023.3261555

[11] C. H. Roh 1 and D. M. Shin, "A Study on the Technology of

Managing Joint Copyrights in Hierarchical NFT-Based Large-Sca

le Virtual Performances," Journal of Software Assessment and

Valuation, Vol. 19, No. 4, pp. 11-21, Dec. 2023 DOI: 10.29056/js

av.2023.12.02

[12] N. Bhagat, J. W. Bae, and S. H. Lee, "A user friendly NFT

platform for Digital Assets," Proceedings of KSCI Conference

2023, Vol. 31, No. 2, pp. 447-450, 2023

[13] INFURA, INFURA IPFS, https://www.infura.io/product/ipfs/

Authors

JongWook Bae received the B.S. in Computer

Science from Changwon University, Korea in

2001, followed by his Master's and Doctoral

degrees in the same department in 2005 and

2012, respectively.

He currently is a lecturer in the Department of Computer

Science at Changwon National University. He is interested in

image processing and blockchain.

Nitin Bhagat received the B.E and M.E

degrees in Computer Engineering from

Pokhara University, Nepal, in 2004 and 2017,

respectively. He joined the faculty of

Computer Engineering as a Lecturer at

Purbanchal University, Biratnagar, Nepal, in 2009. He is

currently a Research scholar in the blockchain technology at

Changwon National University in Korea. He is interested in

blockchain technology, NFT web platform design and

evaluation.

Su-Hyun Lee received the B.S. in Computer

Science from Kwangwoon University, Korea

in 1987. He received the M.S. and Ph.D.

degrees in Computer Science from Korea

Advanced Institute of Science and

Technology(KAIST), Korea, in 1989, 1994, respectively. Dr.

Lee is a Professor in the Department of Computer

Engineering, Changwon National University since 1996. He is

interested in computer algorithm, programming languages,

compiler, and blockchain.

