DOI QR코드

DOI QR Code

Advances in the use of dried blood spots on filter paper to monitor kidney disease

  • Carla Nicola (Graduate Health Sciences Program, Universidade de Caxias do Sul) ;
  • Vandrea de Souza (Graduate Health Sciences Program, Universidade de Caxias do Sul)
  • 투고 : 2023.11.24
  • 심사 : 2024.02.09
  • 발행 : 2024.02.28

초록

Patients with kidney disease require frequent blood tests to monitor their kidney function, which is particularly difficult for young children and the elderly. For these people, the standard method is to evaluate serum creatinine or cystatin C or drug levels through venous sampling, but more recently, evaluation using dried blood spots has been used. This narrative review reports information from the literature on the use of dried blood spots to quantify the main markers used to detect kidney diseases. The ScienceDirect and PubMed databases were searched using the keywords: "dried blood on filter paper," "markers of renal function," "renal function," "creatinine," "cystatin C," "urea," "iohexol," and "iotalamate." Studies using animal samples were excluded, and only relevant articles in English or Spanish were considered. Creatinine was the most assessed biomarker in studies using dried blood spots to monitor kidney function, showing good performance in samples whose hematocrit levels were within normal reference values. According to the included studies, dried blood spots are a practical monitoring alternative for kidney disease. Validation parameters, such as sample and card type, volume, storage, internal patterns, and the effects of hematocrit are crucial to improving the reliability of these results.

키워드

참고문헌

  1. Bikbov B, Perico N, Remuzzi G; on behalf of the GBD Genitourinary Diseases Expert Group. Disparities in chronic kidney disease prevalence among males and females in 195 countries: analysis of the global burden of disease 2016 study. Nephron 2018;139:313-8. https://doi.org/10.1159/000489897
  2. Luyckx VA, Tonelli M, Stanifer JW. The global burden of kidney disease and the sustainable development goals. Bull World Health Organ 2018;96:414-422D.
  3. World Health Organization (WHO). The top 10 causes of death [Internet]. WHO; 2020 [cited 2023 Nov 24]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  4. Byrne C, Cove-Smith A. Clinical assessment of renal disease. Medicine 2019;47:475-81. https://doi.org/10.1016/j.mpmed.2019.05.001
  5. Mihai S, Codrici E, Popescu ID, Enciu AM, Albulescu L, Necula LG, et al. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J Immunol Res 2018;2018:2180373.
  6. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013;382:260-72.
  7. Biljak VR, Honovic L, Matica J, Kresic B, Vojak SS. The role of laboratory testing in detection and classification of chronic kidney disease: national recommendations. Biochem Med (Zagreb) 2017;27:153-76. https://doi.org/10.11613/BM.2017.019
  8. Wang YN, Ma SX, Chen YY, Chen L, Liu BL, Liu QQ, et al. Chronic kidney disease: biomarker diagnosis to therapeutic targets. Clin Chim Acta 2019;499:54-63. https://doi.org/10.1016/j.cca.2019.08.030
  9. Rysz J, Gluba-Brzozka A, Franczyk B, Jablonowski Z, Cialkowska-Rysz A. Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. Int J Mol Sci 2017;18:1702.
  10. Lamb E. Assessment of kidney function in adults. Medicine 2015;43:368-73. https://doi.org/10.1016/j.mpmed.2015.04.005
  11. Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco AL, De Jong PE, et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3:1-150. https://doi.org/10.1038/kisup.2012.73
  12. Soares AA. Ferramentas para deteccao da doenca renal: valores de referencia da taxa de filtracao glomerular e desempenho das equacoes de estimativa com creatinina e cistatina C sericas em individuos saudaveis [doctor's thesis]. Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS); 2013.
  13. Silva AC, Gomez JF, Lugon JR, Graciano ML. Creatinine measurement on dry blood spot sample for chronic kidney disease screening. J Bras Nefrol 2016;38:15-21. https://doi.org/10.5935/0101-2800.20160004
  14. Enderle Y, Foerster K, Burhenne J. Clinical feasibility of dried blood spots: analytics, validation, and applications. J Pharm Biomed Anal 2016;130:231-43. https://doi.org/10.1016/j.jpba.2016.06.026
  15. Rowland M, Emmons GT. Use of dried blood spots in drug development: pharmacokinetic considerations. AAPS J 2010;12:290-3. https://doi.org/10.1208/s12248-010-9188-y
  16. Lakshmy R. Analysis of the use of dried blood spot measurements in disease screening. J Diabetes Sci Technol 2008;2:242-3. https://doi.org/10.1177/193229680800200211
  17. Gupta K, Mahajan R. Applications and diagnostic potential of dried blood spots. Int J Appl Basic Med Res 2018;8:1-2. https://doi.org/10.4103/ijabmr.IJABMR_7_18
  18. Sharma A, Jaiswal S, Shukla M, Lal J. Dried blood spots: concepts, present status, and future perspectives in bioanalysis. Drug Test Anal 2014;6:399-414. https://doi.org/10.1002/dta.1646
  19. Velghe S, Delahaye L, Stove CP. Is the hematocrit still an issue in quantitative dried blood spot analysis? J Pharm Biomed Anal 2019;163:188-96. https://doi.org/10.1016/j.jpba.2018.10.010
  20. Shahbaz H, Gupta M. Creatinine clearance. In: StatPearls [Internet]. StatPearls Publishing; 2024. Available from: https://pubmed.ncbi.nlm.nih.gov/31334948
  21. Sodre FL, Costa JCB, Lima JCC. Evaluation of renal function and damage: a laboratorial challenge. J Bras Patol Med Lab 2007;43:329-37.
  22. Bruck K, Jager KJ, Dounousi E, Kainz A, Nitsch D, Arnlov J, et al. Methodology used in studies reporting chronic kidney disease prevalence: a systematic literature review. Nephrol Dial Transplant 2015;30 Suppl 4(Suppl 4):iv6-16. https://doi.org/10.1093/ndt/gfv131
  23. George JA, Gounden V. Novel glomerular filtration markers. Adv Clin Chem 2019;88:91-119. https://doi.org/10.1016/bs.acc.2018.10.005
  24. Hocher B, Adamski J. Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 2017;13:269-84. https://doi.org/10.1038/nrneph.2017.30
  25. Bjornstad P, Anderson PL, Maahs DM. Measuring glomerular filtration rate by iohexol clearance on filter paper is feasible in adolescents with type 1 diabetes in the ambulatory setting. Acta Diabetol 2016;53:331-3. https://doi.org/10.1007/s00592-015-0764-6
  26. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963;32:338-43. https://doi.org/10.1542/peds.32.3.338
  27. Meesters RJ, Hooff GP. State-of-the-art dried blood spot analysis: an overview of recent advances and future trends. Bioanalysis 2013;5:2187-208. https://doi.org/10.4155/bio.13.175
  28. Castro AC, Borges LG, Souza Rda S, Grudzinski M, D'Azevedo PA. Evaluation of the human immunodeficiency virus type 1 and 2 antibodies detection in dried whole blood spots (DBS) samples. Rev Inst Med Trop Sao Paulo 2008;50:151-6. https://doi.org/10.1590/S0036-46652008000300004
  29. Lehmann S, Delaby C, Vialaret J, Ducos J, Hirtz C. Current and future use of "dried blood spot" analyses in clinical chemistry. Clin Chem Lab Med 2013;51:1897-909. https://doi.org/10.1515/cclm-2013-0228
  30. Edelbroek PM, van der Heijden J, Stolk LM. Dried blood spot methods in therapeutic drug monitoring: methods, assays, and pitfalls. Ther Drug Monit 2009;31:327-36. https://doi.org/10.1097/FTD.0b013e31819e91ce
  31. Koster RA, Alffenaar JW, Botma R, Greijdanus B, Touw DJ, Uges DR, et al. What is the right blood hematocrit preparation procedure for standards and quality control samples for dried blood spot analysis? Bioanalysis 2015;7:345-51. https://doi.org/10.4155/bio.14.298
  32. Koster RA, Greijdanus B, Alffenaar JW, Touw DJ. Dried blood spot analysis of creatinine with LC-MS/MS in addition to immunosuppressants analysis. Anal Bioanal Chem 2015;407:1585-94. https://doi.org/10.1007/s00216-014-8415-2
  33. Lim MD. Dried blood spots for global health diagnostics and surveillance: opportunities and challenges. Am J Trop Med Hyg 2018;99:256-65. https://doi.org/10.4269/ajtmh.17-0889
  34. Crimmins EM, Zhang YS, Kim JK, Frochen S, Kang H, Shim H, et al. Dried blood spots: effects of less than optimal collection, shipping time, heat, and humidity. Am J Hum Biol 2020;32:e23390.
  35. Capiau S, Veenhof H, Koster RA, Bergqvist Y, Boettcher M, Halmingh O, et al. Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology guideline: development and validation of dried blood spot-based methods for therapeutic drug monitoring. Ther Drug Monit 2019;41:409-30. https://doi.org/10.1097/FTD.0000000000000643
  36. Denniff P, Woodford L, Spooner N. Effect of ambient humidity on the rate at which blood spots dry and the size of the spot produced. Bioanalysis 2013;5:1863-71. https://doi.org/10.4155/bio.13.137
  37. Prentice P, Turner C, Wong MC, Dalton RN. Stability of metabolites in dried blood spots stored at different temperatures over a 2-year period. Bioanalysis 2013;5:1507-14. https://doi.org/10.4155/bio.13.121
  38. Malsagova K, Kopylov A, Stepanov A, Butkova T, Izotov A, Kaysheva A. Dried blood spot in laboratory: directions and prospects. Diagnostics (Basel) 2020;10:248.
  39. Al-Uzri A, Freeman KA, Wade J, Clark K, Bleyle LA, Munar M, et al. Longitudinal study on the use of dried blood spots for home monitoring in children after kidney transplantation. Pediatr Transplant 2017;21:e12983.
  40. Vogl PT. Measurement of cystatin C in dried blood spot specimens [master's thesis]. University of Washington; 2013.
  41. Salvador CL, Tondel C, Morkrid L, Bjerre A, Brun A, Bolann B, et al. Glomerular filtration rate measured by iohexol clearance: a comparison of venous samples and capillary blood spots. Scand J Clin Lab Invest 2015;75:710-6.
  42. Staples A, Wong C, Schwartz GJ. Iohexol-measured glomerular filtration rate in children and adolescents with chronic kidney disease: a pilot study comparing venous and finger stick methods. Pediatr Nephrol 2019;34:459-64. https://doi.org/10.1007/s00467-018-4110-4
  43. Dalton RN, Isbell TS, Ferguson R, Fiore L, Malic A, DuBois JA. Creatinine standardization: a key consideration in evaluating whole blood creatinine monitoring systems for CKD screening. Anal Bioanal Chem 2022;414:3279-89. https://doi.org/10.1007/s00216-022-03942-7
  44. Koster RA, Botma R, Greijdanus B, Uges DR, Kosterink JG, Touw DJ, et al. The performance of five different dried blood spot cards for the analysis of six immunosuppressants. Bioanalysis 2015;7:1225-35. https://doi.org/10.4155/bio.15.63
  45. Timmerman P, White S, Cobb Z, de Vries R, Thomas E, van Baar B, et al. Update of the EBF recommendation for the use of DBS in regulated bioanalysis integrating the conclusions from the EBF DBS-microsampling consortium. Bioanalysis 2013;5:2129-36. https://doi.org/10.4155/bio.13.173
  46. Timmerman P, White S, Globig S, Ludtke S, Brunet L, Smeraglia J. EBF recommendation on the validation of bioanalytical methods for dried blood spots. Bioanalysis 2011;3:1567-75. https://doi.org/10.4155/bio.11.132
  47. Daousani C, Karalis V, Malenovic A, Dotsikas Y. Hematocrit effect on dried blood spots in adults: a computational study and theoretical considerations. Scand J Clin Lab Invest 2019;79:325-33. https://doi.org/10.1080/00365513.2019.1622033
  48. Wilhelm AJ, den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet 2014;53:961-73. https://doi.org/10.1007/s40262-014-0177-7
  49. Koster RA, Alffenaar JW, Botma R, Greijdanus B, Uges DR, Kosterink JG, et al. The relation of the number of hydrogen-bond acceptors with recoveries of immunosuppressants in DBS analysis. Bioanalysis 2015;7:1717-22. https://doi.org/10.4155/bio.15.94
  50. den Burger JC, Wilhelm AJ, Chahbouni AC, Vos RM, Sinjewel A, Swart EL. Haematocrit corrected analysis of creatinine in dried blood spots through potassium measurement. Anal Bioanal Chem 2015;407:621-7. https://doi.org/10.1007/s00216-014-8291-9
  51. Abu-Rabie P, Denniff P, Spooner N, Chowdhry BZ, Pullen FS. Investigation of different approaches to incorporating internal standard in DBS quantitative bioanalytical workflows and their effect on nullifying hematocrit-based assay bias. Anal Chem 2015;87:4996-5003. https://doi.org/10.1021/acs.analchem.5b00908
  52. Reyes-Garces N, Alam MN, Pawliszyn J. The effect of hematocrit on solid-phase microextraction. Anal Chim Acta 2018;1001:40-50. https://doi.org/10.1016/j.aca.2017.11.014
  53. Hagan AS, Jones DR, Agarwal R. Use of dried plasma spots for the quantification of iothalamate in clinical studies. Clin J Am Soc Nephrol 2013;8:909-14. https://doi.org/10.2215/CJN.10471012
  54. Scribel L, Zavascki AP, Matos D, Silveira F, Peralta T, Goncalves Landgraf N, et al. Vancomycin and creatinine determination in dried blood spots: analytical validation and clinical assessment. J Chromatogr B Analyt Technol Biomed Life Sci 2020;1137:121897.
  55. Anibaletto Dos Santos AL, Cezimbra da Silva AC, Feltraco Lizot LL, Schneider A, Meireles YF, Hahn RZ, et al. Development and validation of an assay for the measurement of gentamicin concentrations in dried blood spots using UHPLC-MS/MS. J Pharm Biomed Anal 2022;208:114448.
  56. Quraishi R, Lakshmy R, Mukhopadhyay AK, Jailkhani BL. Creatinine measurement and stability in dried serum. J Diabetes Sci Technol 2012;6:988-9. https://doi.org/10.1177/193229681200600435
  57. Abraham RA, Kapil U, Aggarwal SK, Pandey RM, Sharma M, Ramakrishnan L. Measurement of creatinine from dried blood spot by enzymatic method. Int J Adv Res Chem Sci 2015;2:42-6.
  58. Nakano M, Uemura O, Honda M, Ito T, Nakajima Y, Saitoh S. Development of tandem mass spectrometry-based creatinine measurement using dried blood spot for newborn mass screening. Pediatr Res 2017;82:237-43. https://doi.org/10.1038/pr.2017.56
  59. Bachini FI, Pereira D, Santos R, Hausen M, Pereira G, Vieira C, et al. Creatine and creatinine quantification in olympic athletes: dried blood spot analysis pilot study. Biol Sport 2022;39:745-9. https://doi.org/10.5114/biolsport.2022.108701
  60. Sham TT, Badu-Tawiah AK, McWilliam SJ, Maher S. Assessment of creatinine concentration in whole blood spheroids using paper spray ionization-tandem mass spectrometry. Sci Rep 2022;12:14308.
  61. Crimmins E, Kim JK, McCreath H, Faul J, Weir D, Seeman T. Validation of blood-based assays using dried blood spots for use in large population studies. Biodemography Soc Biol 2014;60:38-48. https://doi.org/10.1080/19485565.2014.901885
  62. Plumbe RM, Worth HG. Dried blood spot test estimation of urea. Ann Clin Biochem 1985;22(Pt 4):408-11. https://doi.org/10.1177/000456328502200414
  63. Quraishi R, Lakshmy R, Mukhopadhyay AK, Jailkhani BL. Analysis of the stability of urea in dried blood spots collected and stored on filter paper. Ann Lab Med 2013;33:190-2. https://doi.org/10.3343/alm.2013.33.3.190
  64. Selistre LS, Cochat P, Rech D, Parant F, Souza VCD, Dubourg L. Associacao entre taxa de filtracao glomerular (medida por cromatografia liquida de alto desempenho com iohexol) e oxalato plasmatico. J Bras Nephrol 2018;40:73-6. https://doi.org/10.1590/1678-4685-jbn-3743
  65. Niculescu-Duvaz I, D'Mello L, Maan Z, Barron JL, Newman DJ, Dockrell ME, et al. Development of an outpatient finger-prick glomerular filtration rate procedure suitable for epidemiological studies. Kidney Int 2006;69:1272-5. https://doi.org/10.1038/sj.ki.5000240
  66. Mafham MM, Niculescu-Duvaz I, Barron J, Emberson JR, Dockrell ME, Landray MJ, et al. A practical method of measuring glomerular filtration rate by iohexol clearance using dried capillary blood spots. Nephron Clin Pract 2007;106:c104-12. https://doi.org/10.1159/000102997
  67. Maahs DM, Bushman L, Kerr B, Ellis SL, Pyle L, McFann K, et al. A practical method to measure GFR in people with type 1 diabetes. J Diabetes Complications 2014;28:667-73. https://doi.org/10.1016/j.jdiacomp.2014.06.001
  68. Wang BB, Wu Y, Qin Y, Gong MC, Shi XM, Jing HL, et al. Application of plasma clearance of iohexol in evaluating renal function in Chinese children with chronic kidney disease. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2015;37:171-8.
  69. Luis-Lima S, Gaspari F, Negrin-Mena N, Carrara F, Diaz-Martin L, Jimenez-Sosa A, et al. Iohexol plasma clearance simplified by dried blood spot testing. Nephrol Dial Transplant 2018;33:1597-603.
  70. Wu H, Huang J. Drug-induced nephrotoxicity: pathogenic mechanisms, biomarkers and prevention strategies. Curr Drug Metab 2018;19:559-67. https://doi.org/10.2174/1389200218666171108154419
  71. Perazella MA, Rosner MH. Drug-induced acute kidney injury. Clin J Am Soc Nephrol 2022;17:1220-33. https://doi.org/10.2215/CJN.11290821
  72. Pinto PS, Carminatti M, Lacet T, Rodrigues DF, Nogueira LO, Bastos MG, et al. Nephrotoxic acute renal failure: prevalence, clinical course and outcome. J Bras Nephrol 2009;31:183-9. https://doi.org/10.1590/S0101-28002009000300003
  73. Calvo DM, Saiz LC, Leache L, Celaya MC, Gutierrez-Valencia M, Alonso A, et al. Effect of the combination of diuretics, renin-angiotensin-aldosterone system inhibitors, and non-steroidal anti-inflammatory drugs or metamizole (triple whammy) on hospitalisation due to acute kidney injury: a nested case-control study. Pharmacoepidemiol Drug Saf 2023;32:898-909.
  74. Scherf-Clavel M, Albert E, Zieher S, Valotis A, Hickethier T, Hogger P. Dried blood spot testing for estimation of renal function and analysis of metformin and sitagliptin concentrations in diabetic patients: a cross-sectional study. Eur J Clin Pharmacol 2019;75:809-16. https://doi.org/10.1007/s00228-019-02637-w
  75. Lea-Henry TN, Carland JE, Stocker SL, Sevastos J, Roberts DM. Clinical pharmacokinetics in kidney disease: fundamental principles. Clin J Am Soc Nephrol 2018;13:1085-95. https://doi.org/10.2215/CJN.00340118
  76. Scherf-Clavel M, Hogger P. Analysis of metformin, sitagliptin and creatinine in human dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci 2015;997:218-28. https://doi.org/10.1016/j.jchromb.2015.06.014
  77. Mathew BS, Mathew SK, Aruldhas BW, Prabha R, Gangadharan N, David VG, et al. Analytical and clinical validation of dried blood spot and volumetric absorptive microsampling for measurement of tacrolimus and creatinine after renal transplantation. Clin Biochem 2022;105-106:25-34. https://doi.org/10.1016/j.clinbiochem.2022.04.014
  78. Koop DR, Bleyle LA, Munar M, Cherala G, Al-Uzri A. Analysis of tacrolimus and creatinine from a single dried blood spot using liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013;926:54-61. https://doi.org/10.1016/j.jchromb.2013.02.035
  79. Francke MI, van Domburg B, Bouarfa S, van de Velde D, Hellemons ME, Manintveld OC, et al. The clinical validation of a dried blood spot method for simultaneous measurement of cyclosporine A, tacrolimus, creatinine, and hematocrit. Clin Chim Acta 2022;535:131-9. https://doi.org/10.1016/j.cca.2022.08.014
  80. Veenhof H, Koster RA, Alffenaar JC, Berger SP, Bakker SJ, Touw DJ. Clinical validation of simultaneous analysis of tacrolimus, cyclosporine A, and creatinine in dried blood spots in kidney transplant patients. Transplantation 2017;101:1727-33. https://doi.org/10.1097/TP.0000000000001591
  81. Tan SJ, Cockcroft M, Page-Sharp M, Arendts G, Davis TM, Moore BR, et al. Population pharmacokinetic study of ceftriaxone in elderly patients, using cystatin C-based estimates of renal function to account for frailty. Antimicrob Agents Chemother 2020;64:e00874-20.
  82. Cheung CY, van der Heijden J, Hoogtanders K, Christiaans M, Liu YL, Chan YH, et al. Dried blood spot measurement: application in tacrolimus monitoring using limited sampling strategy and abbreviated AUC estimation. Transpl Int 2008;21:140-5. https://doi.org/10.1097/01.tp.0000331126.42103.63
  83. Almardini R, Taybeh EO, Alsous MM, Hawwa AF, McKeever K, Horne R, et al. A multiple methods approach to determine adherence with prescribed mycophenolate in children with kidney transplant. Br J Clin Pharmacol 2019;85:1434-42. https://doi.org/10.1111/bcp.13911