DOI QR코드

DOI QR Code

Navigating the landscape of clinical genetic testing: insights and challenges in rare disease diagnostics

  • Soo Yeon Kim (Department of Genomic Medicine, Seoul National University Hospital)
  • Received : 2024.01.17
  • Accepted : 2024.02.13
  • Published : 2024.02.28

Abstract

With the rapid evolution of diagnostic tools, particularly next-generation sequencing, the identification of genetic diseases, predominantly those with pediatric-onset, has significantly advanced. However, this progress presents challenges that span from selecting appropriate tests to the final interpretation of results. This review examines various genetic testing methodologies, each with specific indications and characteristics, emphasizing the importance of selecting the appropriate genetic test in clinical practice, taking into account factors like detection range, cost, turnaround time, and specificity of the clinical diagnosis. Interpretation of variants has become more challenging, often requiring further validation and significant resource allocation. Laboratories primarily classify variants based on the American College of Medical Genetics and Genomics and the Association for Clinical Genomic Science guidelines, however, this process has limitations. This review underscores the critical role of clinicians in matching patient phenotypes with reported genes/variants and considering additional factors such as variable expressivity, disease pleiotropy, and incomplete penetrance. These considerations should be aligned with specific gene-disease characteristics and segregation results based on an extended pedigree. In conclusion, this review aims to enhance understanding of the complexities of clinical genetic testing, advocating for a multidisciplinary approach to ensure accurate diagnosis and effective management of rare genetic diseases.

Keywords

References

  1. Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 2013;14:681-91. https://doi.org/10.1038/nrg3555
  2. Orphanet activity report. Orphanet reports series/procedures [Internet]. Orphanet; 2022 [cited 2024 Jan 11]. Available from: https://www.orpha.net/consor/cgi-bin/Education_Home.php?lng=EN
  3. Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28:165-73. https://doi.org/10.1038/s41431-019-0508-0
  4. Global Genes. RARE disease facts [Internet]. Global Genes; 2020 [cited 2024 Jan 11]. Available from: https://globalgenes.org/rare-facts/
  5. Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB. Genomic diagnosis for pediatric disorders: revolution and evolution. Front Pediatr 2020;8:373.
  6. Yunis JJ. Mid-prophase human chromosomes: the attainment of 2000 bands. Hum Genet 1981;56:293-8. https://doi.org/10.1007/BF00274682
  7. Kallioniemi OP, Kallioniemi A, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol 1993;4:41-6.
  8. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997;20:399-407. https://doi.org/10.1002/(SICI)1098-2264(199712)20:4<399::AID-GCC12>3.0.CO;2-I
  9. Albertson DG, Pinkel D. Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 2003;12 Spec No 2:R145-52. https://doi.org/10.1093/hmg/ddg261
  10. Ahn JW, Bint S, Bergbaum A, Mann K, Hall RP, Ogilvie CM. Array CGH as a first line diagnostic test in place of karyotyping for postnatal referrals: results from four years' clinical application for over 8,700 patients. Mol Cytogenet 2013;6:16.
  11. Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, et al. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol 2013;17:589-99. https://doi.org/10.1016/j.ejpn.2013.04.010
  12. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med 2010;61:437-55. https://doi.org/10.1146/annurev-med-100708-204735
  13. Vissers LE, de Vries BB, Veltman JA. Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis. J Med Genet 2010;47:289-97. https://doi.org/10.1136/jmg.2009.072942
  14. Rudkin GT, Stollar BD. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 1977;265:472-3. https://doi.org/10.1038/265472a0
  15. Iqbal MA, Ulmer C, Sakati N. Use of FISH technique in the diagnosis of chromosomal syndromes. East Mediterr Health J 1999;5:1218-24. https://doi.org/10.26719/1999.5.6.1218
  16. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977;74:5463-7. https://doi.org/10.1073/pnas.74.12.5463
  17. Goossens M. The amplification of nucleotide sequences by PCR and the new technics for molecular diagnosis. Reprod Nutr Dev 1990;Suppl 1:117s-124s.
  18. Ben-Ezra JM. Amplification methods in the molecular diagnosis of genetic diseases. Clin Lab Med 1995;15:795-815. https://doi.org/10.1016/S0272-2712(18)30301-9
  19. Erlich HA, Arnheim N. Genetic analysis using the polymerase chain reaction. Annu Rev Genet 1992;26:479-506. https://doi.org/10.1146/annurev.ge.26.120192.002403
  20. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002;30:e57.
  21. Stuppia L, Antonucci I, Palka G, Gatta V. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci 2012;13:3245-76. https://doi.org/10.3390/ijms13033245
  22. Borst M, Miller DM. DNA isolation and Southern analysis: a clinician's view. Am J Med Sci 1990;299:356-60. https://doi.org/10.1097/00000441-199005000-00011
  23. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975;98:503-17. https://doi.org/10.1016/S0022-2836(75)80083-0
  24. Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell 2015;58:586-97. https://doi.org/10.1016/j.molcel.2015.05.004
  25. Pettersson E, Lundeberg J, Ahmadian A. Generations of sequencing technologies. Genomics 2009;93:105-11. https://doi.org/10.1016/j.ygeno.2008.10.003
  26. Fernandez-Marmiesse A, Gouveia S, Couce ML. NGS technologies as a turning point in rare disease research, diagnosis and treatment. Curr Med Chem 2018;25:404-32. https://doi.org/10.2174/0929867324666170718101946
  27. Chung CC, Hue SP, Ng NY, Doong PH; Hong Kong Genome Project; Chu AT, et al. Meta-analysis of the diagnostic and clinical utility of exome and genome sequencing in pediatric and adult patients with rare diseases across diverse populations. Genet Med 2023;25:100896.
  28. Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, et al. X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a "European Community Alport Syndrome Concerted Action" study. J Am Soc Nephrol 2003;14:2603-10. https://doi.org/10.1097/01.ASN.0000090034.71205.74
  29. Bekheirnia MR, Reed B, Gregory MC, McFann K, Shamshirsaz AA, Masoumi A, et al. Genotype-phenotype correlation in X-linked Al-port syndrome. J Am Soc Nephrol 2010;21:876-83. https://doi.org/10.1681/ASN.2009070784
  30. Rao AN, Kavitha J, Koch M, Suresh Kumar V. Inborn errors of metabolism: review and data from a tertiary care center. Indian J Clin Biochem 2009;24:215-22. https://doi.org/10.1007/s12291-009-0041-y
  31. Kim MJ, Kim SY, Lee JS, Kang S, Park LJ, Choi W, et al. Rapid targeted sequencing using dried blood spot samples for patients with suspected actionable genetic diseases. Ann Lab Med 2023;43:280-9. https://doi.org/10.3343/alm.2023.43.3.280
  32. Owen MJ, Niemi AK, Dimmock DP, Speziale M, Nespeca M, Chau KK, et al. Rapid sequencing-based diagnosis of thiamine metabolism dysfunction syndrome. N Engl J Med 2021;384:2159-61. https://doi.org/10.1056/NEJMc2100365
  33. Wojcik MH, Callahan KP, Antoniou A, Del Rosario MC, Brunelli L, ElHassan NO, et al. Provision and availability of genomic medicine services in level IV neonatal intensive care units. Genet Med 2023;25:100926.
  34. Incerti D, Xu XM, Chou JW, Gonzaludo N, Belmont JW, Schroeder BE. Cost-effectiveness of genome sequencing for diagnosing patients with undiagnosed rare genetic diseases. Genet Med 2022;24:109-18. https://doi.org/10.1016/j.gim.2021.08.015
  35. Runheim H, Pettersson M, Hammarsjo A, Nordgren A, Henriksson M, Lindstrand A, et al. The cost-effectiveness of whole genome sequencing in neurodevelopmental disorders. Sci Rep 2023;13:6904.
  36. Yeung A, Tan NB, Tan TY, Stark Z, Brown N, Hunter MF, et al. A cost-effectiveness analysis of genomic sequencing in a prospective versus historical cohort of complex pediatric patients. Genet Med 2020;22:1986-93. https://doi.org/10.1038/s41436-020-0929-8
  37. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24. https://doi.org/10.1038/gim.2015.30
  38. Ellard S, Baple EL, Callaway A, Berry I, Forrester N, Turnbull C, et al. ACGS best practice guidelines for variant classification in Rare Disease 2020 [Internet]. Association for Clinical Genomic Science; 2020 [cited 2024 Jan 11]. Available from: https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf
  39. Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, et al. Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium. Am J Hum Genet 2016;98:1067-76. https://doi.org/10.1016/j.ajhg.2016.03.024
  40. Inoue Y, Machida O, Kita Y, Yamamoto T. Need for revision of the ACMG/AMP guidelines for interpretation of X-linked variants. Intractable Rare Dis Res 2022;11:120-4. https://doi.org/10.5582/irdr.2022.01067
  41. Patel MJ, DiStefano MT, Oza AM, Hughes MY, Wilcox EH, Hemphill SE, et al. Disease-specific ACMG/AMP guidelines improve sequence variant interpretation for hearing loss. Genet Med 2021;23:2208-12. https://doi.org/10.1038/s41436-021-01254-2
  42. Strande NT, Brnich SE, Roman TS, Berg JS. Navigating the nuances of clinical sequence variant interpretation in Mendelian disease. Genet Med 2018;20:918-26. https://doi.org/10.1038/s41436-018-0100-y
  43. Gelb BD, Cave H, Dillon MW, Gripp KW, Lee JA, Mason-Suares H, et al. ClinGen's RASopathy Expert Panel consensus methods for variant interpretation. Genet Med 2018;20:1334-45. https://doi.org/10.1038/gim.2018.3
  44. Savige J, Storey H, Watson E, Hertz JM, Deltas C, Renieri A, et al. Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria. Eur J Hum Genet 2021;29:1186-97. https://doi.org/10.1038/s41431-021-00858-1
  45. Chen E, Facio FM, Aradhya KW, Rojahn S, Hatchell KE, Aguilar S, et al. Rates and classification of variants of uncertain significance in hereditary disease genetic testing. JAMA Netw Open 2023;6:e2339571.
  46. Burke W, Parens E, Chung WK, Berger SM, Appelbaum PS. The challenge of genetic variants of uncertain clinical significance : a narrative review. Ann Intern Med 2022;175:994-1000. https://doi.org/10.7326/M21-4109
  47. Johnson B, Ouyang K, Frank L, Truty R, Rojahn S, Morales A, et al. Systematic use of phenotype evidence in clinical genetic testing reduces the frequency of variants of uncertain significance. Am J Med Genet A 2022;188:2642-51. https://doi.org/10.1002/ajmg.a.62779
  48. Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho YY, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med 2017;19:1105-17. https://doi.org/10.1038/gim.2017.37
  49. Kingdom R, Wright CF. Incomplete penetrance and variable expressivity: from clinical studies to population cohorts. Front Genet 2022;13:920390.
  50. Rossetti S, Kubly VJ, Consugar MB, Hopp K, Roy S, Horsley SW, et al. Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int 2009;75:848-55. https://doi.org/10.1038/ki.2008.686
  51. Benson PF, Barbarik A, Brown SP, Mann TP. GM1-generalized gangliosidosis variant with cardiomegaly. Postgrad Med J 1976;52:159-65. https://doi.org/10.1136/pgmj.52.605.159
  52. Arbisser AI, Donnelly KA, Scott CI Jr, DiFerrante N, Singh J, Stevenson RE, et al. Morquio-like syndrome with beta galactosidase deficiency and normal hexosamine sulfatase activity: mucopolysacchariodosis IVB. Am J Med Genet 1977;1:195-205. https://doi.org/10.1002/ajmg.1320010205
  53. Vytopil M, Ricci E, Dello Russo A, Hanisch F, Neudecker S, Zierz S, et al. Frequent low penetrance mutations in the Lamin A/C gene, causing Emery Dreifuss muscular dystrophy. Neuromuscul Disord 2002;12:958-63. https://doi.org/10.1016/S0960-8966(02)00178-5
  54. Burdon KP, Wirth MG, Mackey DA, Russell-Eggitt IM, Craig JE, Elder JE, et al. A novel mutation in the Connexin 46 gene causes autosomal dominant congenital cataract with incomplete penetrance. J Med Genet 2004;41:e106.
  55. Shawky RM. Reduced penetrance in human inherited disease. Egypt J Medl Hum Genet 2014;15:103-11. https://doi.org/10.1016/j.ejmhg.2014.01.003
  56. Pereira R, Halford K, Sokolov BP, Khillan JS, Prockop DJ. Phenotypic variability and incomplete penetrance of spontaneous fractures in an inbred strain of transgenic mice expressing a mutated collagen gene (COL1A1). J Clin Invest 1994;93:1765-9. https://doi.org/10.1172/JCI117161
  57. Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 2014;164A:1470-81. https://doi.org/10.1002/ajmg.a.36545
  58. Ellingford JM, Hufnagel RB, Arno G. Phenotype and genotype correlations in inherited retinal diseases: population-guided variant interpretation, variable expressivity and incomplete penetrance. Genes (Basel) 2020;11:1274. 
  59. Vujic M, Heyer CM, Ars E, Hopp K, Markoff A, Orndal C, et al. Incompletely penetrant PKD1 alleles mimic the renal manifestations of ARPKD. J Am Soc Nephrol 2010;21:1097-102. https://doi.org/10.1681/ASN.2009101070
  60. Stein Q, Westemeyer M, Darwish T, Pitman T, Hager M, Tabriziani H, et al. Genetic counseling in kidney disease: a perspective. Kidney Med 2023;5:100668.
  61. Burger J, Fonknechten N, Hoeltzenbein M, Neumann L, Bratanoff E, Hazan J, et al. Hereditary spastic paraplegia caused by mutations in the SPG4 gene. Eur J Hum Genet 2000;8:771-6.  https://doi.org/10.1038/sj.ejhg.5200528