Acknowledgement
이 논문은 충북대학교 국립대학육성사업(2023) 지원을 받아 작성되었음.
References
- Belsky, A. J., Matzke, A., and Uselman, S., 1999, Survey of livestock influences on stream and riparian ecosystems in the western United States, Journal of Soil and water Conservation, 54(1), 419-431.
- Dang, N. H. and Maurer, O., 2021, Place-Related Concepts and Pro-Environmental behavior in tourism research: A Conceptual Framework, Sustainability, 13(21), 11861.
- Del Tanago, M. G., Martinez-Fernandez, V., Aguiar, F. C., Bertoldi, W., Dufour, S., de Jalon, D. G., Garofano-Gomez, V., Mandzukovski, D., and Rodriguez-Gonzalez, P. M., 2021, Improving river hydromorphological assessment through better integration of riparian vegetation: Scientific evidence and guidelines, Journal of Environmental Management, 292, 112730.
- Ferreira, V., Albarino, R., Larranaga, A., LeRoy, C. J., Masese, F. O., and Moretti, M. S., 2023, Ecosystem services provided by small streams: an overview, Hydrobiologia, 850(12), 2501-2535. https://doi.org/10.1007/s10750-022-05095-1
- Ge, J., Meng, B., Liang, T., Feng, Q., Gao, J., Yang, S., Huang, X. and Xie, H., 2018, Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China, Remote Sensing of Environment, 218, 162-173. https://doi.org/10.1016/j.rse.2018.09.019
- Hashemi-Beni, L. and Gebrehiwot, A. A., 2021, Flood extent mapping: an integrated method using deep learning and region growing using UAV optical data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2127-2135. https://doi.org/10.1109/JSTARS.2021.3051873
- Huete, A. R., 1988, A soil-adjusted vegetation index (SAVI), Remote Sensing of Environment, 25(3), 295-309. https://doi.org/10.1016/0034-4257(88)90106-X
- James, K. and Bradshaw, K., 2020, Detecting plant species in the field with deep learning and drone technology, Methods in Ecology and Evolution, 11(11), 1509-1519. https://doi.org/10.1111/2041-210X.13473
- Kavzoglu, T. and Colkensen, I., 2009, A kernel functions analysis for support vector machines for land cover classification, International Journal of Applied Earth Observation and Geoinformation, 11, 352-359. https://doi.org/10.1016/j.jag.2009.06.002
- Kazemi Garajeh, M., Weng, Q., Hossein Haghi, V., Li, Z., Kazemi Garajeh, A., and Salmani, B., 2022, Learning-based methods for detection and monitoring of shallow flood-affected areas: impact of shallow-flood spreading on vegetation density, Canadian Journal of Remote Sensing, 48(4), 481-503. https://doi.org/10.1080/07038992.2022.2072277
- Kuo, B. C., Ho, H. H., Li, C. H., Hung, C. C., and Taur, J. S., 2013, A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1), 317-326. https://doi.org/10.1109/JSTARS.2013.2262926
- Laliberte, A. S. and Rango, A., 2009, Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery, IEEE Transactions on Geoscience and Remote Sensing, 47(3), 761-770. https://doi.org/10.1109/TGRS.2008.2009355
- Lee, D. H., Kim, H. J., and Park, J. H., 2021, UAV, a farm map, and machine learning technology convergence classification method of a corn cultivation area, Agronomy, 11(8), 1554.
- Li, D., Wang, G., Qin, C., and Wu, B., 2021, River extraction under bankfull discharge conditions based on sentinel-2 imagery and DEM data, Remote Sensing, 13(14), 2650.
- Li, M., Wu, P., Wang, B., Park, H., Yang, H., and Wu, Y., 2021, A deep learning method of water body extraction from high resolution remote sensing images with multisensors, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3120-3132. https://doi.org/10.1109/JSTARS.2021.3060769
- Lin, J., Huang, J., Prell, C., and Bryan, B. A., 2021, Changes in supply and demand mediate the effects of land-use change on freshwater ecosystem services flows, Science of the Total Environment, 763, 143012.
- Melgani, F., and Bruzzone, L., 2004, Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on geoscience and remote sensing, 42(8), 1778-1790. https://doi.org/10.1109/TGRS.2004.831865
- Mountrakis, G., Im, J., and Ogole, C., 2011, Support vector machines in remote sensing: A review, ISPRS journal of photogrammetry and remote sensing, 66(3), 247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
- McFeeters, S. K., 1996, The use of the Nnormalized Difference Water Index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714
- Nandi, I., Srivastava, P. K., and Shah, K., 2017, Floodplain mapping through support vector machine and optical/infrared images from Landsat 8 OLI/TIRS sensors: Case study from Varanasi, Water Resources Management, 31, 1157-1171. https://doi.org/10.1007/s11269-017-1568-y
- Naiman, R. J., Decamps, H., and Pollock, M., 1993, The role of riparian corridors in maintaining regional biodiversity, Ecological Applications, 3(2), 209-212. https://doi.org/10.2307/1941822
- Peters, D. P., Rivers, A., Hatfield, J. L., Lemay, D. G., Liu, S., and Basso, B., 2020, Harnessing AI to transform agriculture and inform agricultural research, IT Professional, 22(3), 16-21. https://doi.org/10.1109/MITP.2020.2986124
- Ren, L., Liu, Y., Zhang, S., Cheng, L., Guo, Y., and Ding, A., 2020, Vegetation properties in human-impacted riparian zones based on unmanned aerial vehicle (UAV) imagery: An analysis of river reaches in the Yongding River Basin, Forests, 12(1), 22.
- Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W., 1974, Monitoring vegetation systems in the Great Plains with ERTS, NASA Spec. Publ, 351(1), 309.
- Xu, X., Chen, Y., Zhang, J., Chen, Y., Anandhan, P., and Manickam, A., 2021, A novel approach for scene classification from remote sensing images using deep learning methods, European Journal of Remote Sensing, 54(sup2), 383-395. https://doi.org/10.1080/22797254.2020.1790995
- Yang, Q., Shi, L., Han, J., Yu, J., and Huang, K., 2020, A near real-time deep learning approach for detecting rice phenology based on UAV images, Agricultural and Forest Meteorology, 287, 107938.