DOI QR코드

DOI QR Code

Separation of Ag and Zn from Nitrate Leachate of Spent Silver Oxide Batteries by Solvent Extraction with Cyanex272

Cyanex 272를 이용한 폐산화은배터리 침출액으로부터 Ag 및 Zn의 분리

  • Sung-Yong Cho (Department of Environment and Energy Engineering, Chonnam National University) ;
  • Hyeon Seo (Worldex Co., Ltd.) ;
  • Pan-Pan Sun (Department of Environment and Energy Engineering, Chonnam National University)
  • 조성용 (전남대학교 환경에너지공학과) ;
  • 서현 (주식회사 월덱스) ;
  • 쑨판판 (전남대학교 환경에너지공학과)
  • Received : 2023.12.11
  • Accepted : 2024.01.19
  • Published : 2024.02.28

Abstract

The separation of Ag and Zn from the nitrate leachate of spent silver oxide batteries using Cyanex272 as an extractant was investigated. The extraction of Ag and Zn was affected by the concentrations of nitric acid and the extractant. Cyanex-272 selectively extracted Zn over Ag when the HNO3 concentration was lower than 0.1 mol/L. The co-extracted Ag was removed by stripping with 1 mol/L thiourea. Stripping of Zn from the loaded Cyanex-272 was accomplished using 0.5 mol/L HNO3 after the removal of Ag. The McCabe-Thiele diagrams for the extraction of Zn with Cyanex-272, the scrubbing tripping of Ag with thiourea, and the stripping of Zn with HNO3 were constructed. The results were verified by simulated counter-current extraction and stripping experiments. Finally, a process for the separation of Ag and Zn from silver oxide batteries was proposed.

폐산화은 전지의 질산 침출액으로부터 Ag(산화상태)와 Zn(산화상태)의 분리를 위해 cyanex272를 추출제로 사용하여 용매추출 실험을 수행했다. Ag와 Zn의 추출은 질산과 추출제의 농도에 영향을 받았다. Cyanex272는 HNO3 농도가 0.1 mol/L보다 낮을 때 Ag보다 Zn을 선택적으로 추출되었다. 공동 추출된 Ag는 1 mol/L thiourea로 탈거하여 제거했다. Ag를 제거한 후 0.5 mol/L HNO3를 사용하여 추출 된 Cyanex272에서 Zn을 탈거했다. Cyanex272를 사용한 Zn의 추출, thiourea를 사용한 Ag의 탈거, HNO3를 사용한 Zn의 탈거에 대한 McCabe-Thiele 다이어그램이 각각 구성되었다. 위 결과는 시뮬레이션 된 계수 전류 추출 및 탈거 실험을 통해 검증되었다. 마지막으로 산화은 전지에서 Ag와 Zn을 분리하는 공정이 제안되었다.

Keywords

Acknowledgement

This study was financially supported by Chonnam National University (Grant number: 2020-3960). The authors express their sincere gratitude to the Korea Basic Science Institute (KBSI), Gwangju branch, for providing the ICP-OES data.

References

  1. Jadhav, U., Hocheng, H., 2013 : Extraction of silver from spent silver oxide-zinc button cells by using Acidithiobacillus ferrooxidans culture supernatant, J. Clean. Prod., 44, pp.39-44. https://doi.org/10.1016/j.jclepro.2012.11.035
  2. Dias, P., Javimczik, P., Benevit, M., et al., 2016 : Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules, Waste Manag., 57, pp.220-225. https://doi.org/10.1016/j.wasman.2016.03.016
  3. Kuczynska-Lazewska, A., Klugmann-Radziemska, E., Sobczak, Z., et al., 2018 : Recovery of silver metallization from damaged silicon cells, Sol. Energy Mater. Sol. Cells, 176, pp.190-195. https://doi.org/10.1016/j.solmat.2017.12.004
  4. Long, H. Z., Chai, L. Y., Qin, W. Q., et al., 2010 : Solvent extraction of zinc from zinc sulfate solution, J. Cent. South Univ. Technol., 17, pp.760-764. https://doi.org/10.1007/s11771-010-0553-x
  5. Aktas, S., 2010 : Silver recovery from spent silver oxide button cells, Hydrometallurgy, 104, pp.106-111. https://doi.org/10.1016/j.hydromet.2010.05.004
  6. Smith, M. J., Gray, F. M., 2010 : Batteries, from Cradle to Grave, J. Chem. Educ., 87, pp.162-167. https://doi.org/10.1021/ed800053u
  7. Xie, F., Lu, D., Yang H., et al., 2014: Solvent Extraction of Silver and Gold From Alkaline Cyanide Solution with LIX 7950, Miner. Process. Extr. M., 35, pp.229-238. https://doi.org/10.1080/08827508.2013.825615
  8. Sathaiyan, N., Nandakumar, V. and Ramachandran, P., 2006 : Hydrometallurgical recovery of silver from waste silver oxide button cells, J. Power Sources, 161, pp.1463-1468. https://doi.org/10.1016/j.jpowsour.2006.06.011
  9. Gonzalez, P., Javier Recio, F., Ribera, D., et al., 2011 : Silver Recovery from Acidic Solutions by Formation of Nanoparticles and Submicroparticles of Ag on Microfiltration Membranes, (Mass Transfer - Advanced Aspects, InTech, 2011) pp.439-460, DOI: 10.5772/21532.
  10. Gamino-Arroyo, Z., Tapia-Cisneros, A., Zamacona-Saucedo, O., et al., 2015 : Silver Recovery from Spent Silver Oxide Button Cell by Liquid-Liquid Extraction, J. Mater. Sci. Chem. Eng., 3, pp.148-153. https://doi.org/10.4236/msce.2015.37020
  11. Mowafy, E. A. and Aly, H. F., 2007 : Extraction and separation of Pd(II), Pt(IV), Fe(III), Zn(II), Cu(II) and Ag(I) from hydrochloric acid solutions with selected cyanamides as novel extractants, J. Hazard. Mater., 149, pp.465-470. https://doi.org/10.1016/j.jhazmat.2007.04.011
  12. Sun, P. P., Min, B. J., Kim, S. T., et al., 2017 : Separation of Silver (I) and Zinc(II) from Nitrate Solutions by Solvent Extraction with LIX63, Mater. Trans., 58, pp.287-290. https://doi.org/10.2320/matertrans.M2016316
  13. Cho, S. Y., Lee, W. G. and Sun, P. P., 2019 : Solvent Extraction Separation of Silver(I) and Zinc(II) from Nitrate Leach Solution of Spent Silver Oxide Batteries with D2EHPA, Mater. Trans., 60, pp.1090-1095. https://doi.org/10.2320/matertrans.M2018394
  14. Sole, K. C. and Hiskey, J. B., 1995 : Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301, Hydrometallurgy, 37, pp.129-147. https://doi.org/10.1016/0304-386X(94)00023-V
  15. Laki, S., Shamsabadi, A. A., Kargari, A., 2016 : Comparative solvent extraction study of silver(I) by MEHPA and Cyanex 302 as acidic extractants in a new industrial diluent (MIPS), Hydrometallurgy, 160, pp.38-46. https://doi.org/10.1016/j.hydromet.2015.12.002