DOI QR코드

DOI QR Code

타이타늄 스크랩 활용 Ti3AlC2 MAX 상분율 향상을 위한 합성 조건 최적화

Optimization of Synthesis Conditions for Improving Ti3AlC2 MAX Phase Using Titanium Scraps

  • 김태헌 (전북대학교 신소재공학부) ;
  • 임재원 (전북대학교 신소재공학부)
  • Taeheon Kim (Division of Advanced Materials Engineering, College of Engineering, Jeonbuk National University) ;
  • Jae-Won Lim (Division of Advanced Materials Engineering, College of Engineering, Jeonbuk National University)
  • 투고 : 2023.12.08
  • 심사 : 2024.01.09
  • 발행 : 2024.02.28

초록

2차원 물질 MXene의 전구체로 사용되는 Ti3AlC2 MAX 상 합성을 위해, 출발물질로써 타이타늄 (Ti) 스크랩을 활용하는 것은 경제적인 접근이 될 수 있다. 본 연구는 Ti 스크랩을 활용하여 Ti3AlC2 MAX상의 상분율 향상을 위한 합성 조건의 최적화를 수행하였다. Ti 스크랩으로부터 수소화-탈수소화(hydrogenation-dehydrogenation, HDH) 공정에 의해 제조된 Ti 분말의 산소 함량은 고상탈산(Deoxidation in solid state, DOSS) 공정을 통하여 효과적으로 감소되었다. 최적 합성 조건은 25 ~ 32 ㎛의 DOSS-Ti, Al, graphite 분말을 3:1.1:2의 몰 비율로 혼합하여 합성되었다. 이 때의 Ti3AlC2, TiC 및 Al3Ti의 상분율은 각각 97.25%, 0.93%, 1.82%로 나타났으며, 25 ~ 45 ㎛의 Ti3AlC2 MAX 분말의 산소 함량은 4,210 ppm으로 확인되었다.

To synthesize the Ti3AlC2 MAX phase, a crucial precursor for generating the two-dimensional material MXene, the use of Ti scrap as an initial material is an economically feasible approach. This study aims to optimize the synthesis conditions for the phase fraction of the Ti3AlC2 MAX phase utilizing Ti scrap as the Ti source. The deoxidation of Ti powders, prepared through the hydrogenation-dehydrogenation process from Ti scrap, was effectively accomplished using the deoxidation in solid-state (DOSS) process. The optimal synthesis conditions were established by blending DOSS-Ti, Al, and graphite powders with particle sizes ranging from 25 ~ 32 ㎛ in a molar ratio of 3:1.1:2. The resulting phase fractions were as follows: Ti3AlC2 at 97.25 wt.%, TiC at 0.93 wt.%, and Al3Ti at 1.82 wt.%. Furthermore, the oxygen content of the Ti3AlC2 MAX powder, spanning from 25 ~ 45 ㎛, was measured at 4,210 ppm.

키워드

과제정보

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C2010215).

참고문헌

  1. Lyu, J., Kashkarov, E. B., Travitzky, N., et al., 2021 : Sintering of MAX-phase materials by spark plasma and other methods, Journal of Materials Science, 56(3), pp. 1980-2015.  https://doi.org/10.1007/s10853-020-05359-y
  2. Wang, X. H., Zhou, Y. C., 2003 : Oxidation behavior of Ti3AlC2 at 1000-1400 ℃ in air, Corrosion Science, 45(5), pp.891-907.  https://doi.org/10.1016/S0010-938X(02)00177-4
  3. Kong, F., He, X., Liu, Q., et al., 2018 : Effect of Ti3AlC2 precursor on the electrochemical properties of the resulting MXene Ti3C2 for Li-ion batteries, Ceramics International, 44(10), pp.11591-11596.  https://doi.org/10.1016/j.ceramint.2018.03.223
  4. Li, C., Kota, S., Hu, C., et al., 2016 : On the Synthesis of Low-Cost, Titanium-Based MXenes, Journal of Ceramic Science and Technology, 7(3), pp.301-306. 
  5. Jolly, S., Paranthaman, M. P., Naguib, M., 2021 : Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors, Materials Today Advances, 10, pp. 100139. 
  6. Kim, T., Oh, J. M., Cho, G. H., et al., 2020 : Surface and internal deoxidation behavior of titanium alloy powder deoxidized by Ca vapor : comparison of the deoxidation capability of solid solution and intermetallic titanium alloys, Applied Surface Science, 534, pp.147623. 
  7. Kim, T., Oh, J. M., Cho, G. H., et al., 2020 : Comparison of deoxidation capability of solid solution and intermetallic titanium alloy powders deoxidized by calcium vapor, Journal of Alloys and Compounds, 828, pp.154220. 
  8. Scheibe, B., Kupka, V., Peplinska, B., et al., 2019 : The influence of oxygen concentration during MAX phases (Ti3AlC2) preparation on the α-Al2O3 microparticles content and specific surface area of multilayered MXenes (Ti3C2Tx), Materials (Basel), 12(3), pp.353. 
  9. Kim, T., Lim, J. W., 2023 : Synthesis of low-oxygen Ti3AlC2 powders by hydrogenation-dehydrogenation and deoxidation from titanium scraps, Journal of the American Ceramic Society, 106(12), pp.7311-7321. 
  10. Kim, T., Cho, G. H., Lim, J. W., 2022 : Surface reaction and deoxidation mechanism of titanium powder deoxidized by calcium in atmospheric pressure argon, Advanced Powder Technology, 33(10), pp.103729. 
  11. Doebelin, N., Kleeberg, R., 2015 : Profex: A graphical user interface for the Rietveld refinement program BGMN, Journal of Applied Crystallography, 48(Pt 5), pp.1573-1580.  https://doi.org/10.1107/S1600576715014685
  12. Von Treifeldt, J. E., Firestein, K. L., Fernando, J. F. S., et al., 2021 : The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes, Materials & Design, 199, pp.109403. 
  13. Usha Kiran, N., Das, P., Chatterjee, S., et al., 2022 : Effect of "Ti" particle size in the synthesis of highly pure Ti3SiC2 MAX phase, Nano-Structures and Nano-Objects, 30, pp. 100849. 
  14. Oh, J. M., Kwon, H., Kim, W., et al., 2014 : Oxygen behavior during non-contact deoxidation of titanium powder using calcium vapor, Thin Solid Films, 551, pp.98-101.  https://doi.org/10.1016/j.tsf.2013.11.076
  15. Yoshida, M., Hoshiyama, Y., Ommyoji, J., et al., 2010 : Reaction mechanism for the synthesis of Ti3AlC2 through an intermediate carbide of Ti3AlC2 from elemental Ti, Al, and C powder mixture, Journal of the Ceramic Society of Japan, 118(1373), pp.37-42.  https://doi.org/10.2109/jcersj2.118.37
  16. Mathis, T. S., Maleski, K., Goad, A., et al., 2021 : Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene, ACS Nano, 15(4), pp. 6420-6429.  https://doi.org/10.1021/acsnano.0c08357
  17. Ng, W. H. K, Gnanakumar, E. S., Batyrev, E., et al., 2018 : The Ti3AlC2 MAX phase as an efficient catalyst for oxidative dehydrogenation of n-Butane, Angewandte Chemie International Edition, 57(6), pp.1485-1490. https://doi.org/10.1002/anie.201702196