DOI QR코드

DOI QR Code

Development of a model to predict vancomycin serum concentration during continuous infusion of vancomycin in critically ill pediatric patients

  • Yu Jin Han (Department of Pharmacy, Seoul National University Hospital) ;
  • Wonjin Jang (Department of Pediatrics, Seoul National University Hospital and College of Medicine) ;
  • Jung Sun Kim (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Hyun Jeong Kim (Department of Pharmacy, Seoul National University Hospital) ;
  • Sung Yun Suh (Department of Pharmacy, Seoul National University Hospital) ;
  • Yoon Sook Cho (Department of Pharmacy, Seoul National University Hospital) ;
  • June Dong Park (Department of Pediatrics, Seoul National University Hospital and College of Medicine) ;
  • Bongjin Lee (Department of Pediatrics, Seoul National University Hospital and College of Medicine)
  • 투고 : 2023.11.02
  • 심사 : 2024.01.15
  • 발행 : 2024.03.01

초록

Vancomycin is a frequently used antibiotic in intensive care units, and the patient's renal clearance affects the pharmacokinetic characteristics of vancomycin. Several advantages have been reported for vancomycin continuous intravenous infusion, but studies on continuous dosing regimens based on patients' renal clearance are insufficient. The aim of this study was to develop a vancomycin serum concentration prediction model by factoring in a patient's renal clearance. Children admitted to our institution between July 1, 2021, and July 31, 2022 with records of continuous infusion of vancomycin were included in the study. Sex, age, height, weight, vancomycin dose by weight, interval from the start of vancomycin administration to the time of therapeutic drug monitoring sampling, and vancomycin serum concentrations were analyzed with the linear regression analysis of the mixed effect model. Univariable regression analysis was performed using the vancomycin serum concentration as a dependent variable. It showed that vancomycin dose (p < 0.001) and serum creatinine (p = 0.007) were factors that had the most impact on vancomycin serum concentration. Vancomycin serum concentration was affected by vancomycin dose (p < 0.001) and serum creatinine (p = 0.001) with statistical significance, and a multivariable regression model was obtained as follows: Vancomycin serum concentration (mg/l) = -1.296 + 0.281 × vancomycin dose (mg/kg) + 20.458 × serum creatinine (mg/dl) (adjusted coefficient of determination, R2 = 0.66). This prediction model is expected to contribute to establishing an optimal continuous infusion regimen for vancomycin.

키워드

참고문헌

  1. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, J Rybak M, Talan DA, Chambers HF. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 2011;52:285-292. https://doi.org/10.1093/cid/cir034
  2. Wysocki M, Delatour F, Faurisson F, Rauss A, Pean Y, Misset B, Thomas F, Timsit JF, Similowski T, Mentec H, Mier L, Dreyfuss D. Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother. 2001;45:2460-2467. https://doi.org/10.1128/AAC.45.9.2460-2467.2001
  3. Hao JJ, Chen H, Zhou JX. Continuous versus intermittent infusion of vancomycin in adult patients: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016;47:28-35. https://doi.org/10.1016/j.ijantimicag.2015.10.019
  4. Hong LT, Goolsby TA, Sherman DS, Mueller SW, Reynolds P, Cava L, Neumann R, Kiser TH. Continuous infusion vs intermittent vancomycin in neurosurgical intensive care unit patients. J Crit Care. 2015;30:1153.e1-6. https://doi.org/10.1016/j.jcrc.2015.06.012
  5. Roberts JA, Taccone FS, Udy AA, Vincent JL, Jacobs F, Lipman J. Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother. 2011;55:2704-2709. https://doi.org/10.1128/AAC.01708-10
  6. Cristallini S, Hites M, Kabtouri H, Roberts JA, Beumier M, Cotton F, Lipman J, Jacobs F, Vincent JL, Creteur J, Taccone FS. New regimen for continuous infusion of vancomycin in critically ill patients. Antimicrob Agents Chemother. 2016;60:4750-4756. https://doi.org/10.1128/AAC.00330-16
  7. da Silva Alves GC, da Silva SD, Frade VP, Rodrigues D, Baldoni AO, de Castro WV, Sanches C. Determining the optimal vancomycin daily dose for pediatrics: a meta-analysis. Eur J Clin Pharmacol. 2017;73:1341-1353. https://doi.org/10.1007/s00228-017-2306-3
  8. Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, Boots RJ, Lipman J. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations*. Crit Care Med. 2014;42:520-527. https://doi.org/10.1097/CCM.0000000000000029
  9. Hurst AL, Baumgartner C, MacBrayne CE, Child J. Experience with continuous infusion vancomycin dosing in a large pediatric hospital. J Pediatric Infect Dis Soc. 2019;8:174-179. https://doi.org/10.1093/jpids/piy032
  10. McKamy S, Chen T, Lee M, Ambrose PJ. Evaluation of a pediatric continuous-infusion vancomycin therapy guideline. Am J Health Syst Pharm. 2012;69:2066-2071. https://doi.org/10.2146/ajhp120072
  11. Cies JJ, Moore WS 2nd, Conley SB, Muneeruddin S, Parker J, Shea P, Chopra A. Continuous infusion vancomycin through the addition of vancomycin to the continuous renal replacement therapy solution in the PICU: a case series. Pediatr Crit Care Med. 2016;17:e138-e145. https://doi.org/10.1097/PCC.0000000000000656
  12. Genuini M, Oualha M, Bouazza N, Moulin F, Treluyer JM, Lesage F, Renolleau S, Benaboud S. Achievement of therapeutic vancomycin exposure with continuous infusion in critically ill children. Pediatr Crit Care Med. 2018;19:e263-e269. https://doi.org/10.1097/PCC.0000000000001474
  13. Guilhaumou R, Marsot A, Dupouey J, Galambrun C, Boulamery A, Coze C, Simon N, Andre N. Pediatric patients with solid or hematological tumor disease: vancomycin population pharmacokinetics and dosage optimization. Ther Drug Monit. 2016;38:559-566. https://doi.org/10.1097/FTD.0000000000000318
  14. Hoegy D, Goutelle S, Garnier N, Renard C, Faure-Conter C, Bergeron C, Bertrand Y, Bleyzac N. Continuous intravenous vancomycin in children with normal renal function hospitalized in hematology-oncology: prospective validation of a dosing regimen optimizing steady-state concentration. Fundam Clin Pharmacol. 2018;32:323-329. https://doi.org/10.1111/fcp.12344
  15. Plan O, Cambonie G, Barbotte E, Meyer P, Devine C, Milesi C, Pidoux O, Badr M, Picaud JC. Continuous-infusion vancomycin therapy for preterm neonates with suspected or documented Gram-positive infections: a new dosage schedule. Arch Dis Child Fetal Neonatal Ed. 2008;93:F418-F421. Erratum in: Arch Dis Child Fetal Neonatal Ed. 2009;94:F78. https://doi.org/10.1136/adc.2007.128280
  16. Patel AD, Anand D, Lucas C, Thomson AH. Continuous infusion of vancomycin in neonates. Arch Dis Child. 2013;98:478-479. https://doi.org/10.1136/archdischild-2012-303197
  17. de Hoog M, Mouton JW, van den Anker JN. Vancomycin: pharmacokinetics and administration regimens in neonates. Clin Pharmacokinet. 2004;43:417-440. https://doi.org/10.2165/00003088-200443070-00001
  18. Rainkie D, Ensom MH, Carr R. Pediatric assessment of vancomycin empiric dosing (PAVED): a retrospective review. Paediatr Drugs. 2015;17:245-253. https://doi.org/10.1007/s40272-015-0122-8
  19. Marsot A, Boulamery A, Bruguerolle B, Simon N. Vancomycin: a review of population pharmacokinetic analyses. Clin Pharmacokinet. 2012;51:1-13. https://doi.org/10.2165/11596390-000000000-00000
  20. Stewart JJ, Jorgensen SC, Dresser L, Lau TT, Gin A, Thirion DJ, Nishi C, Dalton B. A Canadian perspective on the revised 2020 ASHP-IDSA-PIDS-SIDP guidelines for vancomycin AUC-based therapeutic drug monitoring for serious MRSA infections. J Assoc Med Microbiol Infect Dis Can. 2021;6:3-9. https://doi.org/10.3138/jammi-2020-0028
  21. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol. 2012;1:e6.
  22. Spapen HD, Janssen van Doorn K, Diltoer M, Verbrugghe W, Jacobs R, Dobbeleir N, Honore PM, Jorens PG. Retrospective evaluation of possible renal toxicity associated with continuous infusion of vancomycin in critically ill patients. Ann Intensive Care. 2011;1:26.
  23. Saugel B, Gramm C, Wagner JY, Messer M, Lahmer T, Meidert AS, Schmid RM, Huber W. Evaluation of a dosing regimen for continuous vancomycin infusion in critically ill patients: an observational study in intensive care unit patients. J Crit Care. 2014;29:351-355. https://doi.org/10.1016/j.jcrc.2013.12.007
  24. Pea F, Furlanut M, Negri C, Pavan F, Crapis M, Cristini F, Viale P. Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2009;53:1863-1867. https://doi.org/10.1128/AAC.01149-08
  25. Buyle FM, Decruyenaere J, De Waele J, Tulkens PM, Van Audenrode T, Depuydt P, Claeys G, Robays H, Vogelaers D. A survey of beta-lactam antibiotics and vancomycin dosing strategies in intensive care units and general wards in Belgian hospitals. Eur J Clin Microbiol Infect Dis. 2013;32:763-768. https://doi.org/10.1007/s10096-012-1803-7
  26. Schlobohm CJ, Zhu E, Duby JJ. Continuous infusion versus intermittent infusion vancomycin in a burn center intensive care unit. Burns. 2021;47:1495-1501. https://doi.org/10.1016/j.burns.2021.08.016
  27. Rello J, Sole-Violan J, Sa-Borges M, Garnacho-Montero J, Munoz E, Sirgo G, Olona M, Diaz E. Pneumonia caused by oxacillin-resistant Staphylococcus aureus treated with glycopeptides. Crit Care Med. 2005;33:1983-1987. https://doi.org/10.1097/01.CCM.0000178180.61305.1D
  28. Waineo MF, Kuhn TC, Brown DL. The pharmacokinetic/pharmacodynamic rationale for administering vancomycin via continuous infusion. J Clin Pharm Ther. 2015;40:259-265. https://doi.org/10.1111/jcpt.12270
  29. Ingram PR, Lye DC, Tambyah PA, Goh WP, Tam VH, Fisher DA. Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J Antimicrob Chemother. 2008;62:168-171. https://doi.org/10.1093/jac/dkn080
  30. Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother. 2012;67:17-24. https://doi.org/10.1093/jac/dkr442
  31. Akers KS, Cota JM, Chung KK, Renz EM, Mende K, Murray CK. Serum vancomycin levels resulting from continuous or intermittent infusion in critically ill burn patients with or without continuous renal replacement therapy. J Burn Care Res. 2012;33:e254-e262. https://doi.org/10.1097/BCR.0b013e31825042fa
  32. Covajes C, Scolletta S, Penaccini L, Ocampos-Martinez E, Abdelhadii A, Beumier M, Jacobs F, de Backer D, Vincent JL, Taccone FS. Continuous infusion of vancomycin in septic patients receiving continuous renal replacement therapy. Int J Antimicrob Agents. 2013;41:261-266. https://doi.org/10.1016/j.ijantimicag.2012.10.018