DOI QR코드

DOI QR Code

Dimethyl α-Ketoglutarate Promotes the Synthesis of Collagen and Inhibits Metalloproteinases in HaCaT Cells

  • Bo-Yeong Yu (College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University) ;
  • Da-Hae Eom (Panacea Company) ;
  • Hyun Woo Kim (College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University) ;
  • Yong-Joo Jeong (School of Applied Chemistry, Kookmin University) ;
  • Young-Sam Keum (College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University)
  • 투고 : 2023.07.19
  • 심사 : 2023.08.14
  • 발행 : 2024.03.01

초록

We observed that treatment with dimethyl α-ketoglutarate (DMK) increased the amount of intracellular α-ketoglutarate significantly more than that of α-ketoglutarate in HaCaT cells. DMK also increased the level of intracellular 4-hydroxyproline and promoted the production of collagen in HaCaT cells. In addition, DMK decreased the production of collagenase and elastase and down-regulated the expression of selected matrix metalloproteinases (MMPs), such as MMP-1, MMP-9, MMP-10, and MMP-12, via transcriptional inhibition. The inhibition of MMPs by DMK was mediated by the suppression of the IL-1 signaling cascade, leading to the attenuation of ERK1/2 phosphorylation and AP-1 transactivation. Our study results illustrate that DMK, an alkylated derivative of α-ketoglutarate, increased the level of 4-hydroxyproline, promoted the production of collagen, and inhibited the expression of selected MMPs by affecting the IL-1 cascade and AP-1 transactivation in HaCaT cells. The results suggest that DMK might be useful as an anti-wrinkle ingredient.

키워드

과제정보

This research was supported by the National Research Industrial Cluster Competitiveness Reinforcement project funded by the Korea Industrial Complex Corporation (KICOX, IRIC2210).

참고문헌

  1. Abla, H., Sollazzo, M., Gasparre, G., Iommarini, L. and Porcelli, A. M. (2020) The multifaceted contribution of alpha-ketoglutarate to tumor progression: an opportunity to exploit? Semin. Cell Dev. Biol. 98, 26-33. https://doi.org/10.1016/j.semcdb.2019.05.031
  2. Asadi Shahmirzadi, A., Edgar, D., Liao, C. Y., Hsu, Y. M., Lucanic, M., Asadi Shahmirzadi, A., Wiley, C. D., Gan, G., Kim, D. E., Kasler, H. G., Kuehnemann, C., Kaplowitz, B., Bhaumik, D., Riley, R. R., Kennedy, B. K. and Lithgow, G. J. (2020) Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice. Cell Metab. 32, 447-456.e6. https://doi.org/10.1016/j.cmet.2020.08.004
  3. Bayliak, M. M. and Lushchak, V. I. (2021) Pleiotropic effects of alpha-ketoglutarate as a potential anti-ageing agent. Ageing Res. Rev. 66, 101237.
  4. Bohn, G., Liden, B., Schultz, G., Yang, Q. and Gibson, D. J. (2016) Ovine-based collagen matrix dressing: next-generation collagen dressing for wound care. Adv. Wound Care (New Rochelle) 5, 1-10. https://doi.org/10.1089/wound.2015.0660
  5. Briukhovetska, D., Dorr, J., Endres, S., Libby, P., Dinarello, C. A. and Kobold, S. (2021) Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer 21, 481-499. https://doi.org/10.1038/s41568-021-00363-z
  6. Cabral-Pacheco, G. A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuna, J. M., Perez-Romero, B. A., Guerrero-Rodriguez, J. F., Martinez-Avila, N. and Martinez-Fierro, M. L. (2020) The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 21, 9739.
  7. de Almeida, L. G. N., Thode, H., Eslambolchi, Y., Chopra, S., Young, D., Gill, S., Devel, L. and Dufour, A. (2022) Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 74, 712-768. https://doi.org/10.1124/pharmrev.121.000349
  8. Di Paolo, N. C. and Shayakhmetov, D. M. (2016) Interleukin 1alpha and the inflammatory process. Nat. Immunol. 17, 906-913. https://doi.org/10.1038/ni.3503
  9. Fanjul-Fernandez, M., Folgueras, A. R., Cabrera, S. and Lopez-Otin, C. (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta 1803, 3-19. https://doi.org/10.1016/j.bbamcr.2009.07.004
  10. Freitas-Rodriguez, S., Folgueras, A. R. and Lopez-Otin, C. (2017) The role of matrix metalloproteinases in aging: tissue remodeling and beyond. Biochim. Biophys. Acta Mol. Cell Res. 1864, 2015-2025. https://doi.org/10.1016/j.bbamcr.2017.05.007
  11. Gandhi, M., Elfeky, O., Ertugrul, H., Chela, H. K. and Daglilar, E. (2023) Scurvy: rediscovering a forgotten disease. Diseases 11, 78.
  12. Geervliet, E. and Bansal, R. (2020) Matrix metalloproteinases as potential biomarkers and therapeutic targets in liver diseases. Cells 9, 1212.
  13. Gyanwali, B., Lim, Z. X., Soh, J., Lim, C., Guan, S. P., Goh, J., Maier, A. B. and Kennedy, B. K. (2022) Alpha-ketoglutarate dietary supplementation to improve health in humans. Trends Endocrinol. Metab. 33, 136-146. https://doi.org/10.1016/j.tem.2021.11.003
  14. He, L., Wu, J., Tang, W., Zhou, X., Lin, Q., Luo, F., Yin, Y. and Li, T. (2018) Prevention of oxidative stress by alpha-ketoglutarate via activation of CAR signaling and modulation of the expression of key antioxidant-associated targets in vivo and in vitro. J. Agric. Food Chem. 66, 11273-11283. https://doi.org/10.1021/acs.jafc.8b04470
  15. Heinz, A. (2020) Elastases and elastokines: elastin degradation and its significance in health and disease. Crit. Rev. Biochem. Mol. Biol. 55, 252-273. https://doi.org/10.1080/10409238.2020.1768208
  16. Heinz, A. (2021) Elastic fibers during aging and disease. Ageing Res. Rev. 66, 101255.
  17. Klein, T. and Bischoff, R. (2011) Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41, 271-290. https://doi.org/10.1007/s00726-010-0689-x
  18. Naeini, S. H., Mavaddatiyan, L., Kalkhoran, Z. R., Taherkhani, S. and Talkhabi, M. (2023) Alpha-ketoglutarate as a potent regulator for lifespan and healthspan: evidences and perspectives. Exp. Gerontol. 175, 112154.
  19. Parrado, C., Mercado-Saenz, S., Perez-Davo, A., Gilaberte, Y., Gonzalez, S. and Juarranz, A. (2019) Environmental stressors on skin aging. Mechanistic insights. Front. Pharmacol. 10, 759.
  20. Quintero-Fabian, S., Arreola, R., Becerril-Villanueva, E., Torres-Romero, J. C., Arana-Argaez, V., Lara-Riegos, J., Ramirez-Camacho, M. A. and Alvarez-Sanchez, M. E. (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol. 9, 1370.
  21. Ramshaw, J. A., Shah, N. K. and Brodsky, B. (1998) Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J. Struct. Biol. 122, 86-91. https://doi.org/10.1006/jsbi.1998.3977
  22. Sica, V., Bravo-San Pedro, J. M., Izzo, V., Pol, J., Pierredon, S., Enot, D., Durand, S., Bossut, N., Chery, A., Souquere, S., Pierron, G., Vartholomaiou, E., Zamzami, N., Soussi, T., Sauvat, A., Mondragon, L., Kepp, O., Galluzzi, L., Martinou, J. C., Hess-Stumpp, H., Ziegelbauer, K., Kroemer, G. and Maiuri, M. C. (2019) Lethal poisoning of cancer cells by respiratory chain inhibition plus dimethyl alpha-ketoglutarate. Cell Rep. 27, 820-834.e9. https://doi.org/10.1016/j.celrep.2019.03.058
  23. Uria, J. A. and Werb, Z. (1998) Matrix metalloproteinases and their expression in mammary gland. Cell Res. 8, 187-194. https://doi.org/10.1038/cr.1998.19
  24. Vasta, J. D. and Raines, R. T. (2018) Collagen prolyl 4-hydroxylase as a therapeutic target. J. Med. Chem. 61, 10403-10411. https://doi.org/10.1021/acs.jmedchem.8b00822
  25. Wu, N., Yang, M., Gaur, U., Xu, H., Yao, Y. and Li, D. (2016) Alpha-ketoglutarate: physiological functions and applications. Biomol. Ther. (Seoul) 24, 1-8. https://doi.org/10.4062/biomolther.2015.078
  26. Xue, M. and Jackson, C. J. (2015) Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv. Wound Care (New Rochelle) 4, 119-136. https://doi.org/10.1089/wound.2013.0485
  27. Yan, C. and Boyd, D. D. (2007) Regulation of matrix metalloproteinase gene expression. J. Cell. Physiol. 211, 19-26. https://doi.org/10.1002/jcp.20948