Acknowledgement
This work was supported by the Main Research Program (E-0210400 and E-0210601) of the Korea Food Research Institute (KFRI) and funded by the Ministry of Science, ICT & Future Planning. Part of this paper was presented as a poster at FEBS2023.
References
- Aagaard-Tillery, K. M., Grove, K., Bishop, J., Ke, X., Fu, Q., McKnight, R. and Lane, R. H. (2008) Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J. Mol. Endocrinol. 41, 91-102. https://doi.org/10.1677/JME-08-0025
- Barbosa, M. T., Soares, S. M., Novak, C. M., Sinclair, D., Levine, J. A., Aksoy, P. and Chini, E. N. (2007) The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 21, 3629-3639. https://doi.org/10.1096/fj.07-8290com
- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000) The protein data bank. Nucleic Acids Res. 28, 235-242. https://doi.org/10.1093/nar/28.1.235
- Bowers, E. M., Yan, G., Mukherjee, C., Orry, A., Wang, L., Holbert, M. A., Crump, N. T., Hazzalin, C. A., Liszczak, G., Yuan, H., Larocca, C., Saldanha, S. A., Abagyan, R., Sun, Y., Meyers, D. J., Marmorstein, R., Mahadevan, L. C., Alani, R. M. and Cole, P. A. (2010) Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem. Biol. 17, 471-482. https://doi.org/10.1016/j.chembiol.2010.03.006
- Bricambert, J., Miranda, J., Benhamed, F., Girard, J., Postic, C. and Dentin, R. (2010) Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J. Clin. Invest. 120, 4316-4331. https://doi.org/10.1172/JCI41624
- Camacho-Pereira, J., Tarrago, M. G., Chini, C. C. S., Nin, V., Escande, C., Warner, G. M., Puranik, A. S., Schoon, R. A., Reid, J. M., Galina, A. and Chini, E. N. (2016) CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127-1139. https://doi.org/10.1016/j.cmet.2016.05.006
- Chaudhuri, S., Pahari, B., Sengupta, B. and Sengupta, P. K. (2010) Binding of the bioflavonoid robinetin with model membranes and hemoglobin: inhibition of lipid peroxidation and protein glycosylation. J. Photochem. Photobiol. B 98, 12-19. https://doi.org/10.1016/j.jphotobiol.2009.10.002
- Chen, C., Liu, Q., Liu, L., Hu, Y. Y. and Feng, Q. (2018) Potential biological effects of (-)-epigallocatechin-3-gallate on the treatment of nonalcoholic fatty liver disease. Mol. Nutr. Food Res. 62, 1700483.
- Chen, H., Lin, R. J., Xie, W., Wilpitz, D. and Evans, R. M. (1999) Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98, 675-686. https://doi.org/10.1016/S0092-8674(00)80054-9
- Chiang, S. H., Harrington, W. W., Luo, G., Milliken, N. O., Ulrich, J. C., Chen, J., Rajpal, D. K., Qian, Y., Carpenter, T., Murray, R., Geske, R. S., Stimpson, S. A., Kramer, H. F., Haffner, C. D., Becherer, J. D., Preugschat, F. and Billin, A. N. (2015) Genetic ablation of CD38 Protects against western diet-induced exercise intolerance and metabolic Inflexibility. PLoS One 10, e0134927.
- Chung, M. Y., Song, J. H., Lee, J., Shin, E. J., Park, J. H., Lee, S. H., Hwang, J. T. and Choi, H. K. (2019) Tannic acid, a novel histone acetyltransferase inhibitor, prevents non-alcoholic fatty liver disease both in vivo and in vitro model. Mol. Metab. 19, 34-48. https://doi.org/10.1016/j.molmet.2018.11.001
- Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., O'Neil, L., White, T. A., Sinclair, D. A. and Chini, E. N. (2013) Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62, 1084-1093. https://doi.org/10.2337/db12-1139
- Eslam, M., Valenti, L. and Romeo, S. (2018) Genetics and epigenetics of NAFLD and NASH: clinical impact. J. Hepatol. 68, 268-279. https://doi.org/10.1016/j.jhep.2017.09.003
- Evans, R. M., Barish, G. D. and Wang, Y. X. (2004) PPARs and the complex journey to obesity. Nat. Med. 10, 355-361. https://doi.org/10.1038/nm1025
- Fesen, M. R., Pommier, Y., Leteurtre, F., Hiroguchi, S., Yung, J. and Kohn, K. W. (1994) Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem. Pharmacol. 48, 595-608. https://doi.org/10.1016/0006-2952(94)90291-7
- Fujii, H., Kawada, N. and Japan Study Group Of Nafld, J.-N. (2020) The role of insulin resistance and diabetes in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 21, 3863.
- Funaro, A. and Malavasi, F. (1999) Human CD38, a surface receptor, an enzyme, an adhesion molecule and not a simple marker. J. Biol. Regul. Homeost. Agents 13, 54-61.
- Gorniak, I., Bartoszewski, R. and Kroliczewski, J. (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 18, 241-272. https://doi.org/10.1007/s11101-018-9591-z
- Gruben, N., Shiri-Sverdlov, R., Koonen, D. P. and Hofker, M. H. (2014) Nonalcoholic fatty liver disease: a main driver of insulin resistance or a dangerous liaison? Biochim. Biophys. Acta 1842, 2329-2343. https://doi.org/10.1016/j.bbadis.2014.08.004
- Hennig, A. K., Peng, G. H. and Chen, S. (2013) Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression. PLoS One 8, e69721.
- Horenstein, A. L., Faini, A. C. and Malavasi, F. (2021) CD38 in the age of COVID-19: a medical perspective. Physiol. Rev. 101, 1457-1486. https://doi.org/10.1152/physrev.00046.2020
- Kalaany, N. Y., Gauthier, K. C., Zavacki, A. M., Mammen, P. P., Kitazume, T., Peterson, J. A., Horton, J. D., Garry, D. J., Bianco, A. C. and Mangelsdorf, D. J. (2005) LXRs regulate the balance between fat storage and oxidation. Cell Metab. 1, 231-244. https://doi.org/10.1016/j.cmet.2005.03.001
- Kessoku, T., Imajo, K., Honda, Y., Kato, T., Ogawa, Y., Tomeno, W., Kato, S., Mawatari, H., Fujita, K., Yoneda, M., Nagashima, Y., Saito, S., Wada, K. and Nakajima, A. (2016) Resveratrol ameliorates fibrosis and inflammation in a mouse model of nonalcoholic steatohepatitis. Sci. Rep. 6, 22251.
- Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J. and Bolton, E. E. (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47, D1102-D1109. https://doi.org/10.1093/nar/gky1033
- Kim, S. Y., Cho, B. H. and Kim, U. H. (2010) CD38-mediated Ca2+ signaling contributes to angiotensin II-induced activation of hepatic stellate cells: attenuation of hepatic fibrosis by CD38 ablation. J. Biol. Chem. 285, 576-582. https://doi.org/10.1074/jbc.M109.076216
- Ling, C. and Groop, L. (2009) Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58, 2718-2725. https://doi.org/10.2337/db09-1003
- Liu, X., Wang, L., Zhao, K., Thompson, P. R., Hwang, Y., Marmorstein, R. and Cole, P. A. (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451, 846-850. https://doi.org/10.1038/nature06546
- Loomba, R., Abraham, M., Unalp, A., Wilson, L., Lavine, J., Doo, E. and Bass, N. M.; Nonalcoholic Steatohepatitis Clinical Research Network. (2012) Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 56, 943-951. https://doi.org/10.1002/hep.25772
- Lu, L., Wang, J., Yang, Q., Xie, X. and Huang, Y. (2021) The role of CD38 in HIV infection. AIDS Res. Ther. 18, 11.
- Maksimoska, J., Segura-Pena, D., Cole, P. A. and Marmorstein, R. (2014) Structure of the p300 histone acetyltransferase bound to acetyl-coenzyme A and its analogues. Biochemistry 53, 3415-3422. https://doi.org/10.1021/bi500380f
- Mikula, M., Majewska, A., Ledwon, J. K., Dzwonek, A. and Ostrowski, J. (2014) Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver. Int. J. Mol. Med. 34, 1647-1654. https://doi.org/10.3892/ijmm.2014.1958
- Moon, Y. A. (2017) The SCAP/SREBP pathway: a mediator of hepatic steatosis. Endocrinol. Metab. (Seoul) 32, 6-10. https://doi.org/10.3803/EnM.2017.32.1.6
- Morandi, F., Horenstein, A. L., Costa, F., Giuliani, N., Pistoia, V. and Malavasi, F. (2018) CD38: a target for immunotherapeutic approaches in multiple myeloma. Front. Immunol. 9, 2722.
- Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785-2791. https://doi.org/10.1002/jcc.21256
- Piedra-Quintero, Z. L., Wilson, Z., Nava, P. and Guerau-de-Arellano, M. (2020) CD38: an immunomodulatory molecule in inflammation and autoimmunity. Front. Immunol. 11, 597959.
- Rahman, S. M., Schroeder-Gloeckler, J. M., Janssen, R. C., Jiang, H., Qadri, I., Maclean, K. N. and Friedman, J. E. (2007) CCAAT/enhancing binding protein beta deletion in mice attenuates inflammation, endoplasmic reticulum stress, and lipid accumulation in diet-induced nonalcoholic steatohepatitis. Hepatology 45, 1108-1117. https://doi.org/10.1002/hep.21614
- Sarwar, R., Pierce, N. and Koppe, S. (2018) Obesity and nonalcoholic fatty liver disease: current perspectives. Diabetes Metab. Syndr. Obes. 11, 533-542. https://doi.org/10.2147/DMSO.S146339
- Thompson, P. R., Wang, D., Wang, L., Fulco, M., Pediconi, N., Zhang, D., An, W., Ge, Q., Roeder, R. G., Wong, J., Levrero, M., Sartorelli, V., Cotter, R. J. and Cole, P. A. (2004) Regulation of the p300 HAT domain via a novel activation loop. Nat. Struct. Mol. Biol. 11, 308-315. https://doi.org/10.1038/nsmb740
- Tolsma, T. O. and Hansen, J. C. (2019) Post-translational modifications and chromatin dynamics. Essays Biochem. 63, 89-96. https://doi.org/10.1042/EBC20180067
- Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334
- Verdone, L., Agricola, E., Caserta, M. and Di Mauro, E. (2006) Histone acetylation in gene regulation. Brief. Funct. Genomic. Proteomic. 5, 209-221. https://doi.org/10.1093/bfgp/ell028
- Wang, L. F., Miao, L. J., Wang, X. N., Huang, C. C., Qian, Y. S., Huang, X., Wang, X. L., Jin, W. Z., Ji, G. J., Fu, M., Deng, K. Y. and Xin, H. B. (2018) CD38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating Sirt1/PPARgamma signaling pathway. J. Cell. Mol. Med. 22, 101-110. https://doi.org/10.1111/jcmm.13297
- Wang, Y., Bryant, S. H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B. A., Thiessen, P. A., He, S. and Zhang, J. (2017) PubChem BioAssay: 2017 update. Nucleic Acids Res. 45, D955-D963. https://doi.org/10.1093/nar/gkw1118
- Williams, C. D., Stengel, J., Asike, M. I., Torres, D. M., Shaw, J., Contreras, M., Landt, C. L. and Harrison, S. A. (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140, 124-131. https://doi.org/10.1053/j.gastro.2010.09.038
- Yan, X., Qi, M., Li, P., Zhan, Y. and Shao, H. (2017) Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci. 7, 50.
- Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., Li, Y., Shi, J., An, W., Hancock, S. M., He, F., Qin, L., Chin, J., Yang, P., Chen, X., Lei, Q., Xiong, Y. and Guan, K. L. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000-1004. https://doi.org/10.1126/science.1179689
- Zhu, X. Y., Huang, C. S., Li, Q., Chang, R. M., Song, Z. B., Zou, W. Y. and Guo, Q. L. (2012) p300 exerts an epigenetic role in chronic neuropathic pain through its acetyltransferase activity in rats following chronic constriction injury (CCI). Mol. Pain 8, 84.