DOI QR코드

DOI QR Code

Clinical Outcome of Implants Placed in Grafted Maxillary Sinus Using Recombinant Human Bone Morphogenetic Protein-2: A 5-year Follow-Up Study

  • Yu-Jeong Baek (Department of Oral and Maxillofacial Surgery, University of Ulsan Hospital, University of Ulsan College of Medicine) ;
  • Jin-Ho Lee (Department of Oral and Maxillofacial Surgery, University of Ulsan Hospital, University of Ulsan College of Medicine) ;
  • Hyo-Jeong Kim (Department of Dentistry, University of Ulsan Hospital, University of Ulsan College of Medicine) ;
  • Bok-Joo Kim (Department of Oral and Maxillofacial Surgery, Department of Dentistry, Dong-A University Medical Center) ;
  • Jang-Ho Son (Department of Oral and Maxillofacial Surgery, University of Ulsan Hospital, University of Ulsan College of Medicine)
  • Received : 2024.02.08
  • Accepted : 2024.03.11
  • Published : 2024.03.30

Abstract

Purpose: To investigate the 5-year outcome of dental implants placed in a grafted maxillary sinus using recombinant human bone morphogenetic protein-2 (rhBMP-2). Materials and Methods: We retrospectively analyzed 27 implants after maxillary sinus floor augmentation (MSFA) using rhBMP-2 in 16 patients between January 2016 and March 2017. The study evaluated two outcome variables: (1) 5-year cumulative survival and success rate of the implant after functional loading and (2) marginal bone loss (MBL) for implant failure. Results: The average residual bone height was 4.78±1.53 mm. The healing period before loading was 8.35±2.34 months. The crown-to-implant ratio was 1.31±0.26. The 5-year cumulative survival and success rate after functional loading were 100% and 96.3%, respectively. The 5-year average MLB was 0.89±0.82 mm. Conclusion: Placing dental implants with MSFA using rhBMP-2 is a reliable procedure with favorable long-term survival and success rates.

Keywords

References

  1. Al-Moraissi EA, Altairi NH, Abotaleb B, Al-Iryani G, Halboub E, Alakhali MS. What is the most effective rehabilitation method for posterior Maxillas with 4 to 8 mm of residual alveolar bone height below the maxillary sinus with implant-supported prostheses? A frequentist network meta-analysis. J Oral Maxillofac Surg. 2019;77:70.e1-33.  https://doi.org/10.1016/j.joms.2018.08.009
  2. Toniollo MB, Macedo AP, Rodrigues RC, Ribeiro RF, Mattos MDGC. Three-dimensional finite element analysis of the stress distribution on morse taper implants surface. J Prosthodont Res. 2013;57:206-12.  https://doi.org/10.1016/j.jpor.2013.02.003
  3. Carreira AC, Lojudice FH, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res. 2014;93:335-45.  https://doi.org/10.1177/0022034513518561
  4. Boyne PJ, Nakamura A, Shabahang S. Evaluation of the long-term effect of function on rhBMP-2 regenerated hemimandibulectomy defects. Br J Oral Maxillofac Surg. 1999;37:344-52.  https://doi.org/10.1054/bjom.1999.0205
  5. Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res. 1998;346:26-37.  https://doi.org/10.1097/00003086-199801000-00006
  6. Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev. 2000;21:393-411.  https://doi.org/10.1210/edrv.21.4.0403
  7. Enneking WF, Eady JL, Burchardt H. Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects. J Bone Joint Surg Am. 1980;62:1039-58.  https://doi.org/10.2106/00004623-198062070-00001
  8. von Arx T, Cochran DL, Hermann JS, Schenk RK, Buser D. Lateral ridge augmentation using different bone fillers and barrier membrane application. A histologic and histomorphometric pilot study in the canine mandible. Clin Oral Implants Res. 2001;12:260-9.  https://doi.org/10.1034/j.1600-0501.2001.012003260.x
  9. de Lange GL, Overman JR, Farre-Guasch E, Korstjens CM, Hartman B, Langenbach GEJ, Van Duin MA, Klein-Nulend J. A histomorphometric and micro-computed tomography study of bone regeneration in the maxillary sinus comparing biphasic calcium phosphate and deproteinized cancellous bovine bone in a human split-mouth model. 2014;117:8-22.  https://doi.org/10.1016/j.oooo.2013.08.008
  10. Bignon A, Chouteau J, Chevalier J, Fantozzi G, Carret JP, Chavassieux P, Boivin G, Melin M, Hartmann D. Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response. J Mater Sci Mater Med. 2003;14:1089-97.  https://doi.org/10.1023/B:JMSM.0000004006.90399.b4
  11. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science. 1988;242:1528-34.  https://doi.org/10.1126/science.3201241
  12. Kim SJ, Kim MR, Oh JS, Han I, Shin SW. Effects of polycaprolactone-tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: pilot study in dogs. Yonsei Med J. 2009;50:825-31.  https://doi.org/10.3349/ymj.2009.50.6.825
  13. Lee JH, Kim CS, Choi KH, Jung UW, Yun JH, Choi SH, Cho KS. The induction of bone formation in rat calvarial defects and subcutaneous tissues by recombinant human BMP-2, produced in Escherichia coli. Biomaterials. 2010;31:3512-9.  https://doi.org/10.1016/j.biomaterials.2010.01.075
  14. Wikesjo UM, Guglielmoni P, Promsudthi A, Cho KS, Trombelli L, Selvig KA, Jin L, Wozney JM. Periodontal repair in dogs: effect of rhBMP-2 concentration on regeneration of alveolar bone and periodontal attachment. J Clin Periodontol. 1999;26:392-400.  https://doi.org/10.1034/j.1600-051X.1999.260610.x
  15. Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA. 1990;87:2220-4.  https://doi.org/10.1073/pnas.87.6.2220
  16. Kong CB, Lee JH, Baek HR, Lee CK, Chang BS. Posterolateral lumbar fusion using Escherichia coli-derived rhBMP-2/hydroxyapatite in the mini pig. Spine J. 2014;14:2959-67.  https://doi.org/10.1016/j.spinee.2014.06.007
  17. Woo BH, Fink BF, Page R, Schrier JA, Jo YW, Jiang G, DeLuca M, Vasconez HC, DeLuca PP. Enhancement of bone growth by sustained delivery of recombinant human bone morphogenetic protein-2 in a polymeric matrix. Pharm Res. 2001;18:1747-53.  https://doi.org/10.1023/A:1013382832091
  18. Saito N, Takaoka K. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials. 2003;24:2287-93.  https://doi.org/10.1016/S0142-9612(03)00040-1
  19. Aldinger G, Herr G, Kusswetter W, Reis HJ, Thielemann FW, Holz U. Bone morphogenetic protein: a review. Int Orthop. 1991;15:169-77.  https://doi.org/10.1007/BF00179720
  20. Wennstrom J, Zurdo J, Karlsson S, Ekestubbe A, Grondahl K, Lindhe J. Bone level change at implant-supported fixed partial dentures with and without cantilever extension after 5 years in function. J Clin Periodontol. 2004;31:1077-83.  https://doi.org/10.1111/j.1600-051X.2004.00603.x
  21. Bryant SR. The effects of age, jaw site, and bone condition on oral implant outcomes. Int J Prosthodont. 1998;11:470-90. 
  22. Huwiler MA, Pjetursson BE, Bosshardt DD, Salvi GE, Lang NP. Resonance frequency analysis in relation to jawbone characteristics and during early healing of implant installation. Clin Oral Implants Res. 2007;18:275-80.  https://doi.org/10.1111/j.1600-0501.2007.01336.x
  23. Penarrocha M, Palomar M, Sanchis JM, Guarinos J, Balaguer J. Radiologic study of marginal bone loss around 108 dental implants and its relationship to smoking, implant location, and morphology. Int J Oral Maxillofac Implants. 2004;19:861-7. 
  24. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1:11-25. 
  25. Adell R, Lekholm U, Rockler B, Branemark PI, Lindhe J, Eriksson B, Sbordone L. Marginal tissue reactions at osseointegrated titanium fixtures (I). A 3-year longitudinal prospective study. Int J Oral Maxillofac Surg. 1986;15:39-52.  https://doi.org/10.1016/S0300-9785(86)80010-2
  26. Pierrisnard L, Renouard F, Renault P, Barquins M. Influence of implant length and bicortical anchorage on implant stress distribution. Clin Implant Dent Relat Res. 2003;5:254-62.  https://doi.org/10.1111/j.1708-8208.2003.tb00208.x
  27. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J Prosthet Dent. 2004;91:144-50.  https://doi.org/10.1016/j.prosdent.2003.10.018
  28. Hertel RC, Kalk W. Influence of the dimensions of implant superstructure on peri-implant bone loss. Int J Prosthodont. 1993;6:18-24. 
  29. Smiler DG, Johnson PW, Lozada JL, Misch C, Rosenlicht JL, Tatum OH Jr, Wagner JR. Sinus lift grafts and endosseous implants. Treatment of the atrophic posterior maxilla. Dent Clin North Am. 1992;36:151-86.  https://doi.org/10.1016/S0011-8532(22)02464-8
  30. Peleg M, Garg AK, Mazor Z. Predictability of simultaneous implant placement in the severely atrophic posterior maxilla: A 9-year longitudinal experience study of 2,132 implants placed into 731 human sinus graft. Int J Oral Maxillofac Implants. 2006;21:94-102.  https://doi.org/10.1016/j.prosdent.2006.05.017
  31. Brunski, JB. Biomechanical factors affecting the bone-dental implant interface. Clin Mater. 1992;10:153-201.  https://doi.org/10.1016/0267-6605(92)90049-Y
  32. Mendonca JA, Francischone CE, Senna PM, Matos de Oliveira AE, Sotto-Maior BS. A retrospective evaluation of the survival rates of splinted and non-splinted short dental implants in posterior partially edentulous jaws. J Periodontol. 2014;85:787-94.  https://doi.org/10.1902/jop.2013.130193
  33. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prostheses type, and loading during function. J Prosthet Dent. 1996;76:633-40.  https://doi.org/10.1016/S0022-3913(96)90442-4
  34. Buser D, Janner SF, Wittneben JG, Bragger U, Ramseier CA, Salvi GE. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res. 2012;14:839-51.  https://doi.org/10.1111/j.1708-8208.2012.00456.x
  35. Bulaqi HA, Mashhadi MM, Safari H, Samandari MM, Geramipanah F. Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: A finite element analysis. J Prosthet Dent. 2015;113:548-57.  https://doi.org/10.1016/j.prosdent.2014.11.007
  36. Malchiodi L, Cucchi A, Ghensi P, Consonni D, Nocini PF. Influence of crown-implant ratio on implant success rates and crestal bone levels: a 36-month follow-up prospective study. Clin Oral Implants Res. 2014;25:240-51.  https://doi.org/10.1111/clr.12105
  37. Hingsammer L, Watzek G, Pommer B. The influence of crown-to-implant ratio on marginal bone levels around splinted short dental implants: A radiological and clincial short term analysis. Clin Implant Dent Relat Res. 2017;19:1090-8.  https://doi.org/10.1111/cid.12546
  38. Hardt CRE, Grodahl K, Lekholm U, Wennstrom JL. Outcome of implant therapy in relation to experienced loss of periodontal bone support: a retrospective 5-year study. Clin Oral Implants Res. 2002;13:488-94.  https://doi.org/10.1034/j.1600-0501.2002.130507.x
  39. Mombelli A, van Oosten MA, Schurch E Jr, Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol. 1987;2:145-51.  https://doi.org/10.1111/j.1399-302X.1987.tb00298.x
  40. Lang NP, Tonetti MS. Periodontal risk assessment (PRA) for patients in supportive periodontal therapy (SPT). Oral Health Prev Dent. 2003;1:7-16.