DOI QR코드

DOI QR Code

Penetration Behavior of Jack-up Leg with Spudcan for Offshore Wind Turbine to Multi-layered Soils Using Centrifuge Tests

  • Min Jy Lee (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Yun Wook Choo (Department of Smart Infrastructure Engineering, Kongju National University)
  • 투고 : 2023.11.29
  • 심사 : 2023.12.20
  • 발행 : 2024.02.28

초록

This study examined the jack-up spudcan penetration for a new type of offshore wind substructure newly proposed using the jack-up concept to reduce construction costs. The jack-up spudcan for offshore wind turbines should be designed to penetrate a stable soil layer capable of supporting operational loads. This study evaluated multi-layered soil conditions using centrifuge tests: loose sand over clay and loose sand-clay-dense sand. The penetration resistance profiles of spudcan recorded at the centrifuge tests were compared with the ISO and InSafeJIP methods. In the tests, a spudcan punch-through effect slightly emerged under the sand-over-clay condition, and a spudcan squeezing effect occurred in the clay-over-sand layer. On the other hand, these two effects were not critically predicted using the ISO method, and the InSafeJIP result predicted only punch-through failure. Nevertheless, ISO and InSafeJIP methods were well-matched under the conditions of the clay layer beneath the sand and the penetration resistance profiles at the clay layer of centrifuge tests. Therefore, the ISO and InSafeJIP methods well predict the punch-through effect at the clay layer but have limitations for penetration resistance predictions at shallow depths and strong stratum soil below a weak layer.

키워드

과제정보

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government (MOTIE) (20223030020240, Development of 10MW or higher offshore wind power upper and lower package installation support structure system for LCOE reduction)

참고문헌

  1. Cassidy, M. J. (2012). Experimental observations of the penetration of spudcan footings in silt. Geotechnique, 62(8), 727-732. https://doi.org/10.1680/geot.9.T.020
  2. Choi, J. H. (2020). A study on the nonlinear structure-soil interaction model of jack-up in soft over stiff clay [Doctoral dissertation, Seoul National University].
  3. Choo, Y. W., Lee, M. J., & Hong, I. B. (2023). Technical consideration on jackup-spudcan structures for offshore wind substructure. Proceedings of the 2023 Fall conference of The Korea Society of Ocean Engineers, Gyeongju, Korea, 156-157.
  4. Falcon, S. S. D., Choo, Y. W., & Leung, C. F. (2021b). Spudcan-pile interaction in sand-over-clay: centrifuge modelling. Geotechnique, 73(6), 480-494. https://doi.org/10.1680/jgeot.21. 00085
  5. Falcon, S. S., Choo, Y. W., & Leung, C. F. (2021a). Pile behavior due to adjacent jack-up spudcan penetration. International Journal of Offshore and Polar Engineering, 31(04), 472-479. https://doi.org/10.17736/ijope.2021.jc823
  6. Falcon, S. S., Sespene, S. M., Choo, Y. W., & Leung, C. F. (2019). Model study on spudcan-pile interaction in uniform clay and sand-over-clay. In the 29th International Ocean Polar Engineering Conference, Honolulu, USA, 2, 2042-2048.
  7. Horwath, S., Hassrick, J., Grismala, R., Diller, E., Krebs, J., & Manhard, R. (2020). Comparison of environmental effects from different offshore wind turbine foundations (Report No. OCS Study BOEM 2020-041). U.S. Department of the Interior. https://www.boem.gov/sites/default/files/documents/environment/Wind-Turbine-Foundations-White%20Paper-Final-WhitePaper.pdf
  8. Hossain, M. S., Hu, Y., & Randolph, M. F. (2004, January). Bearing behaviour of spudcan foundation on uniform clay during deep penetration. In International Conference on Offshore Mechanics and Arctic Engineering , 37432, 321-328. https://doi.org/10.1115/OMAE2004-51153
  9. Hossain, M. S., Hu, Y., Randolph, M. F., & White, D. J. (2005). Limiting cavity depth for spudcan foundations penetrating clay. Geotechnique, 55(9), 679-690. https://doi.org/10.1680/geot.2005.55.9.679
  10. Houlsby, G. T., & Martin, C. M. (2003). Undrained bearing capacity factors for conical footings on clay. Geotechnique, 53(5), 513-520. https://doi.org/10.1680/geot.2003.53.5.513
  11. Hu, P. (2015). Predicting punch-through failure of a spudcan on sand overlying clay [Doctoral dissertation, University of Western Australia].
  12. Hu, P., Wang, D., Stanier, S. A., & Cassidy, M. J. (2015). Assessing the punch-through hazard of a spudcan on sand overlying clay. Geotechnique, 65(11), 883-896. https://doi.org/10.1680/jgeot.14.P.097
  13. Hu, P., Xiao, Z., Leo, C., & Liyanapathirana, S. (2021). Advances in the prediction of spudcan punch-through in double-layered soils. Marine Structures, 79, 103038. https://doi.org/10.1016/j.marstruc.2021.103038
  14. International Organization for Standardization (ISO). (2016). Petroleum and natural gas industries: site specific assessment of mobile offshore unit - part 1: jack-ups ( ISO 19905-1:2016).
  15. Jin, H. B., Jang, B. S., Choi, J. H., Zhao, J., & Kang, S. W. (2015). Comparison of analysis methods for designed spudcan bearing capacity and penetration behavior for southwest sea soil. Journal of Ocean Engineering and Technology, 29(2), 175-185. https://doi.org/10.5574/KSOE.2015.29.2.175
  16. Kim, D. J., Youn, J. U., Jee, S. H., & Choo, Y. W. (2014). Numerical studies on combined VM loading and eccentricity factor of circular footings on sand. Journal of the Korean Geotechnical Society, 30(3), 59-72. https://doi.org/10.7843/kgs.2014.30.3.59
  17. Kim, D. S., Kim, N. R., Choo, Y. W., & Cho, G. C. (2013). A newly developed state-of-the-art geotechnical centrifuge in Korea. KSCE journal of Civil Engineering, 17, 77-84. https://doi.org/10.1007/s12205-013-1350-5
  18. Lee, K. K. (2009). Investigation of potential spudcan punch-through failure on sand overlying clay soils [Doctoral dissertation, University of Western Australia]. https://research-repository.uwa.edu.au/en/publications/investigation-of-potential-spudcan-punch-through-failure-on-sand
  19. Martin, C. M. (2004). User guide for ABC-analysis of bearing capacity.
  20. Ministry of Trade, Industry and Energy (MOTIE). (2023). 제10차 전력수급기본계획(2022~2036) [The 10th basic plan for electricity supply and demand (2022~2036)]. MOTIE.
  21. Musial, W., Butterfield, S., & Ram, B. (2006, May). Energy from offshore wind. In Offshore technology conference (pp. OTC-18355). OTC. https://doi.org/10.4043/18355-MS
  22. Osbone, J. J., Teh, K. L., Houlsby, G. T., Cassidy, M. J., Bienen, B., & Leung, C. F. (2011). Improved guidelines for the prediction of geotechnical performance of spudcan foundations during installation and removal of jack-up units. Offshore Technology Development, RPS Engergy. InSafeJIP.
  23. Schofield, A. N. (1980). Cambridge geotechnical centrifuge operations. Geotechnique, 30(3), 227-268. https://doi.org/10.1680/geot.1980.30.3.227
  24. Sespene, S., & Choo, Y. W. (2018). Determination of undrained shear strength using miniature cone and T-bar penetrometers for Kaolin clay. KSCE Journal of Civil and Environmental Engineering Research, 38(3), 429-438. https://doi.org/10.12652/Ksce.2018.38.3.0429
  25. Shin, M. Y., Sung, J. Y., Park, C. I., & Kim, H. K. (2023). Introduction to 10MW jack-up type fixed offshore wind power design (K-WIND). Proceedins of the 2023 Fall conference of The Korea Society of Ocean Engineers, Gyeongju, Korea, 162-163.
  26. Society of Naval Archit Marine Engineers (SNAME). (2008). Guidelines for site-specific assessment of mobile jack-up units. Technical & Research Bulletin, 5-5A, SNAME.
  27. Teh, K. L., Cassidy, M. J., Leung, C. F., Chow, Y. K., Randolph, M. F., & Quah, C. K. (2008). Revealing the bearing capacity mechanisms of a penetrating spudcan through sand overlying clay. Geotechnique, 58(10), 793-804. https://doi.org/10.1680/geot.2008.58.10.793
  28. Vesic, A. S. (1975). Bearing capacity of shallow foundations. In H. F. Winterkorn and H. Y. Fang (eds.), Foundation Engineering Handbook.
  29. Xie, Y., Leung, C. F., & Chow, Y. K. (2017). Centrifuge modelling of spudcan-pile interaction in soft clay overlying sand. Geotechnique, 67(1), 69-77. https://doi.org/10.1680/jgeot.15.P.031
  30. Yoo, J. K., Park, D., & Kang, J. (2017). Evaluation of spudcan penetration/extraction behavior in uniform sand and clay. Journal of the Korean Geotechnical Society, 33(3), 17-28. https://doi.org/10.7843/kgs.2017.33.3.17
  31. Yoo, J., Park, D., & Mandokhail, S. U. J. (2016). Spudcan design under combined load in Southwestern sea of Korea. Journal of the Korean GEO-environmental Society, 17(10), 13-22. http://dx.doi.org/10.14481/jkges.2016.17.10.13
  32. Yun, J. W., & Han, J. T. (2021). Dynamic behavior of pile-supported wharves by slope failure during earthquake via centrifuge tests. International Journal of Geo-Engineering, 12(1), 33. https://doi.org/10.1186/s40703-021-00161-4