DOI QR코드

DOI QR Code

Potential of Contaminant Removal Using a Full-Scale Municipal Water Treatment System with Adsorption as Post-Treatment

실 규모 물 처리 공정 및 후속 흡착 처리에 의한 오염원 제거 잠재성 평가

  • Haeil Byeon (경희대학교 사회기반시스템공학과 환경공학연구실) ;
  • Geonhee Yeo (경희대학교 사회기반시스템공학과 환경공학연구실) ;
  • Anh-Hong Nguyen (경희대학교 사회기반시스템공학과 환경공학연구실) ;
  • Youngwoong Kim (경희대학교 사회기반시스템공학과) ;
  • Donggun Kim (경희대학교 사회기반시스템공학과) ;
  • Taehun Lee (경희대학교 사회기반시스템공학과) ;
  • Seolhwa Jeong (블루그린링크) ;
  • Younghoa Choi (블루그린링크) ;
  • Seungdae Oh (경희대학교 사회기반시스템공학과)
  • Received : 2024.01.09
  • Accepted : 2024.03.19
  • Published : 2024.03.31

Abstract

This study aimed to assess the efficacy of an adsorption process in removing organic matter and micropollutant residuals. After a full-scale water circulation system, the adsorption process was considered a post-treatment step. The system, treating anthropogenically impacted surface waters, comprises a hydro-cyclone, coagulation, flocculation, and dissolved air flotation unit. While the system generally maintained stable and satisfactory effluent quality standards over months, it did not meet the highest standard for organic matter (as determined by chemical oxygen demands). Adsorption experiments utilized two granular activated carbon types, GAC 830 and GCN 830, derived from coal and coconut-shell feedstocks, respectively. The assessment encompassed organic materials along with two notable micropollutants: acetaminophen (APAP) and acid orange 7 (AO7). Adsorption kinetics and isotherm experiments were conducted to determine adsorption rates and maximum adsorption amounts. The quantitative findings derived from pseudo-second-order kinetics and Langmuir isotherm models suggest the effectiveness of the adsorption process. The findings of this study propose the potential of employing the adsorption process as a post-treatment to enhance the treatment of contaminants that are not satisfactorily treated by conventional water circulation systems. This enhancement is crucial for ensuring the sustainability of urban water cycles.

본 연구에서는 하이드로사이클론, 응결/응집, 용존공기부상 단일 공정이 결합한 실 규모 물순환 조합공정(HCFD)의 오염 지표수 처리 성능을 평가하였다. 실 규모 물순환 공정은 수질 변동이 큰 유입 원수를 대상으로 안정적인 수처리 효율을 보였으며, 유입수의 주요 수질 지표가 매우 나쁨(BOD, TP, COD) 혹은 약간 나쁨(SS)이었으나, 방류수는 매우 좋음(BOD, SS, TP) 혹은 좋음(COD) 수준으로 향상되었다. 물순환 시스템 방류수의 후속 고도 처리를 위해 활성탄 기반 흡착 공정의 용존성 유기물 및 미량오염물질(잔류의약물질 APAP 및 산업 화학물질 AO7) 처리 잠재성을 평가하였다. 오염원 흡착 특성은 흡착동역학 및 등온 흡착실험과 관련된 모델링 기법을 이용하여 관찰하였다. 실험 결과, 후처리 활성탄 흡착은 잔류 유기물, APAP, AO7 유기물에 대한 높은 오염원 제거 잠재성이 있음이 확인되었으며, 오염원 흡착속도 및 최대 흡착량 값은 유사 2차 반응속도 모델과 Langmuir 등온흡착 모델에 의해 결정되었다. 본 연구 결과, 활성탄 기반 흡착 공정은 기존의 물순환 조합공정과 연계시 수처리 효율을 상호 보완적으로 높이고, 흡착 공정은 전단의 입자 분리 공정으로 제거가 어려운 용존성 오염원의 후속 처리에 대한 높은 잠재성이 있음을 시사한다.

Keywords

Acknowledgement

본 연구는 환경부(MOE)의 재원으로 한국환경산업기술원(KEITI)의 녹색혁신기업 성장지원 프로그램(R&D) 사업의 지원을 받아 수행되었음(Grant No. 2022003160004).

References

  1. American Public Health Association (2005), Standard Methods for the Examination of Water and Sewage, Washington, D.C.
  2. Bergaoui, M., A. Nakhli, Y. Benguerba, M. Khalfaoui, A. Erto, F. E. Soetaredjo, S. Ismadji and B. Ernst (2018), "Novel Insights into the Adsorption Mechanism of Methylene Blue Onto Organo-bentonite: Adsorption Isotherms Modeling and Molecular Simulation", Journal of Molecular Liquids, 272: 697~707. https://doi.org/10.1016/j.molliq.2018.10.001
  3. Bergstrom, J. and H. Vomhoff (2007), "Experimental Hydrocyclone Flow Field Studies", Separation and Purification Technology, 53: 8~20. https://doi.org/10.1016/j.seppur.2006.09.019
  4. Edzwald, J. K. (2010), "Dissolved Air Flotation and Me", Water Research, 44(7): 2077~2106. https://doi.org/10.1016/j.watres.2009.12.040
  5. Grady, C. P. L., G. T. Daigger, N. G. Love and C. D. M Filipe (2011), Biological Wastewater Treatment (3rd ed.), London: IWA Publishing, CRC Press.
  6. Grujic, S., T. Vasiljevic and L. Mila (2009), "Determination of Multiple Pharmaceutical Classes in Surface and Ground Waters by Liquid Chromatography-Ion Trap-Tandem Mass Spectrometry", Journal of Chromatography A, 1216(25): 4989~5000. https://doi.org/10.1016/j.chroma.2009.04.059
  7. Gunawardhana, T., J. G. Hong, Y. Choi, S. I. Siddiqui, H. T. Nguyen and S. Oh (2023), "Water Quality Characteristics and Reuse Potential Using Adsorption as a Post-treatment Option for a Full-scale Hydrocyclone, Coagulation, Flocculation, and Dissolved Air Flotation System", Environmental Geochemistry and Health, 45(11): 8585~8598. https://doi.org/10.1007/s10653-023-01738-x
  8. Haarhoff, J. and J. K. Edzwald (2013), "Adapting Dissolved Air Flotation for the Clarification of Seawater", Desalination, 311: 90~94. https://doi.org/10.1016/j.desal.2012.10.035
  9. He, C., Z. Liu, J. Wu, X. Pan, Z. Fang, J. Li and B. A. Bryan (2021), "Future Global Urban Water Scarcity and Potential Solutions", Nature Communications, 12(1): 4667.
  10. Keerthisinghe, T. P., L. N. Nguyen, E. E. Kwon and S. Oh (2019), "Antiseptic Chlorhexidine in Activated Sludge: Biosorption, Antimicrobial Susceptibility, and Alteration of Community Structure", Journal of Environmental Management, 237: 629~635. https://doi.org/10.1016/j.jenvman.2019.02.043
  11. Kim, D. G., D. Choi, S. Cheon, S-O. Ko, S. Kang and S. Oh (2020), "Addition of Biochar into Activated Sludge Improves Removal of Antibiotic Ciprofloxacin", Journal of Water Process Engineering, 33: 101019.
  12. Liu, Y., Q. Cheng, B. Zhang and F. Tian (2015), "Three-Phase Hydrocyclone Separator: A Review", Chemical Engineering Research and Design, 100: 554~560. https://doi.org/10.1016/j.cherd.2015.04.026
  13. Murray, K. E., S. M. Thomas and A. A. Bodour (2010), "Prioritizing Research for Trace Pollutants and Emerging Contaminants in the Freshwater Environment", Environmental Pollution, 158(12): 3462~3471. https://doi.org/10.1016/j.envpol.2010.08.009
  14. Nworie, F. S., F. I. Nwabue, W. Oti, E. Mbam and B. U. Nwali (2019), "Removal of Methylene Blue from Aqueous Solution Using Activated Rice Husk Biochar: Adsorption Isotherms, Kinetics and Error Analysis", Journal of the Chilean Chemical Society, 64: 1.
  15. Oh, S., D. Choi and C. J. Cha (2019), "Ecological Processes Underpinning Microbial Community Structure during Exposure to Subinhibitory Level of Triclosan", Scientific Reports, 9(1): Article 1.
  16. Oh, S. and D. Choi (2020), "Emerging Investigator Series: Activated Sludge Upon Antibiotic Shock Loading: Mechanistic Description of Functional Stability and Microbial Community Dynamics", Environmental Science: Water Research & Technology, 6(5): 1262~1271. https://doi.org/10.1039/D0EW00069H
  17. Oh, S. and Y. Kim (2022), "Biochar Enhance Functional Stability of Ammonia-oxidizing Bioprocess Against Toxic Chemical Loading", Journal of Environmental Chemical Engineering, 10(2): 107289.
  18. Park, S. and S. Oh (2020a), "Activated Sludge-Degrading Analgesic Drug Acetaminophen: Acclimation, Microbial Community Dynamics, Degradation Characteristics, and Bioaugmentation Potential", Water Research, 182: 115957.
  19. Park, S. and S. Oh (2020b), "Inhibitory Mechanisms and Fate of the Analgesic Drug Acetaminophen in Nitrifying Activated Sludge", Journal of Hazardous Materials, 399: 123104.
  20. Pashaei, R., R. Dzingeleviciene, A. Bradauskaite, A. Lajevardipour, M. Mlynska-Szultka, N. Dzingelevicius, S. Raugele, A. Razbadauskas, S. Abbasi, R. M. Rees and B. Buszewski (2022), "Pharmaceutical and Microplastic Pollution before and during the COVID-19 Pandemic in Surface Water, Wastewater, and Groundwater", Water, 14(19): Article 19.
  21. Perera, H. J. (2019), "Removal of Acid Orange 7 Dye from Wastewater: Review", International Journal of Waste Resources, 9: 367.
  22. Radman, J. R., R. Langlois, T. Leadbeater, J. Finch, N. Rowson and K. Waters (2014), "Particle Flow Visualization in Quartz Slurry Inside a Hydrocyclone using the Positron Emission Particle Tracking Technique", Minerals Engineering, 62: 142~145. https://doi.org/10.1016/j.mineng.2014.03.019
  23. Sher, F., K. Hanif, A. Rafey, U. Khalid, A. Zafar, M. Ameen and E. C. Lima (2021), "Removal of Micro-pollutants from Municipal Wastewater Using Different Types of Activated Carbons", Journal of Environmental Management, 278: 111302.
  24. Silva, J. A. (2023), "Water Supply and Wastewater Treatment and Reuse in Future Cities: A Systematic Literature Review", Water, 15(17): Article 17.
  25. Tewari, S., R. Jindal, Y. L. Kho, S. Eo and K. Choi (2013), "Major Pharmaceutical Residues in Wastewater Treatment Plants and Receiving Waters in Bangkok, Thailand, and Associated Ecological Risks", Chemosphere, 91(5): 697~704. https://doi.org/10.1016/j.chemosphere.2012.12.042
  26. Wilkinson, J., P. S. Hooda, J. Barker, S. Barton and J. Swinden (2017), "Occurrence, Fate and Transformation of Emerging Contaminants in Water: An Overarching Review of the Field", Environmental Pollution, 231(1): 954~970. https://doi.org/10.1016/j.envpol.2017.08.032
  27. Zur, J., A. Pinski, A. Marchlewicz, K. Hupert-Kocurek, D. Wojcieszynska and U. Guzik (2018), "Organic Micropollutants Paracetamol and Ibuprofen: Toxicity, Biodegradation, and Genetic Background of Their Utilization by Bacteria", Environmental Science and Pollution Research, 25: 21498~21524. https://doi.org/10.1007/s11356-018-2517-x