DOI QR코드

DOI QR Code

Therapeutic Dose, Duration, and Efficacy of Bee Venom for Treating Clinical Mastitis in Dairy Cow

  • Seong-Min Kim (Laboratory of Veterinary Theriogenology, College of Veterinary Medicine, Chungbuk National University) ;
  • Kyung-Duk Min (Laboratory of Veterinary Theriogenology, College of Veterinary Medicine, Chungbuk National University) ;
  • Seon-Jong Yun (Veterinary Pharmaceutical Management Division, Animal and Plant Quarantine Agency) ;
  • Dae-Youn Hwang (Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Hyun-Gu Kang (Laboratory of Veterinary Theriogenology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2024.01.23
  • Accepted : 2024.01.29
  • Published : 2024.02.28

Abstract

This study was conducted to explore the efficacy of bee venom as a treatment for mastitis and to determine the optimal dosage and treatment period. When 6 mg or 12 mg of bee venom was administered to each experimental quarter of mastitis in dairy cow, the clinical symptoms in the 12 mg quarter were noticeably improved compared to those in the 6 mg quarter. There was no significant difference in the somatic cell count (SCC) in the milk between normal and mastitis quarters between the 6 and 12 mg doses, but there was a steady decrease in the 12 mg-treated quarter (p = 0.34). To determine the treatment period, bee venom was administered for 2, 4, and 7 days. After administering 12 mg of bee venom for 7 days, the SCC in the milk was compared before 6 days and after 7 days, and the SCC was significantly decreased to less than 100,000 SC/mL after 7 days (p = 0.01). In addition, to investigate the efficacy of bee venom, the minimum inhibitory concentration for S. aureus, E. coli, and coagulase negative staphylococci was measured, and the results showed that Gram-positive bacteria were more sensitive to bee venom than Gram-negative bacteria, and treatment for Gram-negative bacteria was limited. As a result of this study, it was confirmed that a dose of 12 mg of bee venom and a treatment period of more than 7 days were required to treat mastitis, and that treatment with bee venom alone against Gram-negative bacteria was negative.

Keywords

References

  1. An JC, Kwon KR, Lee SB, Lim TJ. Experimental study on the comparison of antibacterial and antioxidant effects between the bee benom and sweet bee venom. J Pharmacopuncture 2006; 9: 97-104.  https://doi.org/10.3831/KPI.2006.9.3.097
  2. Azevedo C, Pacheco D, Soares L, Romao R, Moitoso M, Maldonado J, et al. Prevalence of contagious and environmental mastitis-causing bacteria in bulk tank milk and its relationships with milking practices of dairy cattle herds in Sao Miguel Island (Azores). Trop Anim Health Prod 2016; 48: 451-459.  https://doi.org/10.1007/s11250-015-0973-6
  3. Baek YH, Huh JE, Lee JD, Choi DY, Park DS. Antinociceptive effect and the mechanism of bee venom acupuncture (Apipuncture) on inflammatory pain in the rat model of collagen-induced arthritis: mediation by alpha2-Adrenoceptors. Brain Res 2006; 1073-1074: 305-310.  https://doi.org/10.1016/j.brainres.2005.12.086
  4. Barbosa TM, Levy SB. The impact of antibiotic use on resistance development and persistence. Drug Resist Updat 2000; 3: 303-311.  https://doi.org/10.1054/drup.2000.0167
  5. Buku A, Price JA, Mendlowitz M, Masur S. Mast cell degranulating peptide binds to RBL-2H3 mast cell receptors and inhibits IgE binding. Peptides 2001; 22: 1993-1998.  https://doi.org/10.1016/S0196-9781(01)00542-3
  6. Buku A. Mast cell degranulating (MCD) peptide: a prototypic peptide in allergy and inflammation. Peptides 1999; 20: 415-420.  https://doi.org/10.1016/S0196-9781(98)00167-3
  7. Burmanczuk A, Tomasz G, Gbylik-Sikorska M, Gajda A, Kowalski C. Withdrawal of amoxicillin and penicillin G procaine from milk after intramammary administration in dairy cows with mastitis. J Vet Res 2017; 61: 37-43.  https://doi.org/10.1515/jvetres-2017-0005
  8. Carpena M, Nunez-Estevez B, Soria-Lopez A, Simal-Gandara J. Bee venom: an updating review of its bioactive molecules and its health applications. Nutrients 2020; 12: 3360. 
  9. Castro I, Alba C, Aparicio M, Arroyo R, Jimenez L, Fernandez L, et al. Metataxonomic and immunological analysis of milk from ewes with or without a history of mastitis. J Dairy Sci 2019; 102: 9298-9311.  https://doi.org/10.3168/jds.2019-16403
  10. Cheng B, Xu P. Redox-sensitive nanocomplex for targeted delivery of melittin. Toxins (Basel) 2020; 12: 582. 
  11. Choi SH, Cho SK, Cui XS, Kang SS, Park SC. Therapeutic effect of bee venom in calves with bacterial diarrhea. J Vet Clin 2000; 17: 57-61. 
  12. Choi Y, Joo S, Lee SW, Lee HJ, Chun MS. Korean farm animal veterinarians' perception and practice of prudent use of antimicrobials. Korean J Vet Res 2023; 63: e17. 
  13. Contreras GA, Sordillo LM. Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comp Immunol Microbiol Infect Dis 2011; 34: 281-289.  https://doi.org/10.1016/j.cimid.2011.01.004
  14. De UK, Mukherjee R. Dynamics of milk leukocytes in response to intramammary infusion of amoxicillin plus sulbactam during bovine subclinical mastitis. Vet Med 2012; 57: 583-590.  https://doi.org/10.17221/6465-VETMED
  15. Dong J, Ying B, Huang S, Ma S, Long P, Tu X, et al. High-performance liquid chromatography combined with intrinsic fluorescence detection to analyse melittin in individual honeybee (Apis mellifera) venom sac. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002: 139-143.  https://doi.org/10.1016/j.jchromb.2015.08.014
  16. Erskine RJ, Wagner S, DeGraves FJ. Mastitis therapy and pharmacology. Vet Clin North Am Food Anim Pract 2003; 19: 109-138, vi.  https://doi.org/10.1016/S0749-0720(02)00067-1
  17. Esener N, Green MJ, Emes RD, Jowett B, Davies PL, Bradley AJ, et al. Discrimination of contagious and environmental strains of Streptococcus uberis in dairy herds by means of mass spectrometry and machine-learning. Sci Rep 2018; 8: 17517. 
  18. Feng WL. Acupuncture treatment for 30 cases of infantile chronic diarrhea. J Tradit Chin Med 1989; 9: 106-107. 
  19. Halasa T, Huijps K, Osteras O, Hogeveen H. Economic effects of bovine mastitis and mastitis management: a review. Vet Q 2007; 29: 18-31.  https://doi.org/10.1080/01652176.2007.9695224
  20. Han SM, Lee KG, Park KK. Antimicrobial activity of honeybee venom against fish pathogenic bacteria. J Fish Pathol 2011; 24: 113-120.  https://doi.org/10.7847/jfp.2011.24.2.113
  21. Han SM, Lee KG, Yeo JH, Kweon HY, Woo SO, Oh BY, et al. Effects of honeybee (Apis Mellifera L) venom and probiotic in piglets. Korean J Vet Serv 2008; 31: 229-237. 
  22. Han SM, Lee KG, Yeo JH, Kweon HY, Woo SO, Oh BY, et al. Therapeutic effects of honeybee (Apis Mellifera L.) venom injection on bovine mastitis. Korean J Vet Serv 2007; 30: 115-123. 
  23. Han SM, Lee KG, Yeo JH, Oh BY, Kim ST. Effects of honeybee (Apis mellifera L.) venom on the reproductive efficiency of dams and the growth performance, disease occurrence of Hanwoo calves. Korean J Vet Serv 2010; 33: 287-292. 
  24. Hegazi, A, Abdou, AM, Abd El-Moez SI, Allah FA. Evaluation of the antibacterial activity of bee venom from different sources. World Appl Sci J 2014; 30: 266-270. 
  25. Hider RC. Honeybee venom: a rich source of pharmacologically active peptides. Endeavour 1988; 12: 60-65.  https://doi.org/10.1016/0160-9327(88)90082-8
  26. Hogeveen H, Huijps K, Lam TJ. Economic aspects of mastitis: new developments. N Z Vet J 2011; 59: 16-23.  https://doi.org/10.1080/00480169.2011.547165
  27. Huh JE, Seo BK, Lee JW, Park YC, Baek YH. Analgesic effects of diluted bee venom acupuncture mediated by δ-opioid and α2-adrenergic receptors in osteoarthritic rats. Altern Ther Health Med 2018; 24: 28-35. 
  28. Ministry of Food and Drug Safety. Total sales of antibiotics and anticoccidials. In: Ministry of Food and Drug Safety, editor. Monitoring of national antibiotic use and resistance -animals, livestock products- annual report 2021. Cheongju: Ministry of Food and Drug Safety. 2022: 7-8. 
  29. Kim JM, Han TS, Kang SS, Kim G, Choi SH. Comparison of antinociceptive effect of Korean and American bee venoms on pain in rodent models. J Vet Clin 2010; 27: 663-667. 
  30. Klibi A, Jouini A, Gomez P, Slimene K, Ceballos S, Torres C, et al. Molecular characterization and clonal diversity of methicillin-resistant and -susceptible Staphylococcus aureus isolates of milk of cows with clinical mastitis in Tunisia. Microb Drug Resist 2018; 24: 1210-1216.  https://doi.org/10.1089/mdr.2017.0278
  31. Krishnamoorthy P, Goudar AL, Suresh KP, Roy P. Global and countrywide prevalence of subclinical and clinical mastitis in dairy cattle and buffaloes by systematic review and meta-analysis. Res Vet Sci 2021; 136: 561-586.  https://doi.org/10.1016/j.rvsc.2021.04.021
  32. Lee NK, Jun SA, Ha JU, Paik HD. Screening and characterization of bacteriocinogenic lactic acid bacteria from Jeot-gal, a Korean fermented fish food. J Microbiol Biotechnol 2000; 10: 423-428. 
  33. Leitner G, Zilberman D, Papirov E, Shefy S. Assessment of acoustic pulse therapy (APT), a non-antibiotic treatment for dairy cows with clinical and subclinical mastitis. PLoS One 2018; 13: e0199195. 
  34. Li X, Xu C, Liang B, Kastelic JP, Han B, Tong X, et al. Alternatives to antibiotics for treatment of mastitis in dairy cows. Front Vet Sci 2023; 10: 1160350. 
  35. Lin YC. Observation of therapeutic effects of acupuncture treatment in 170 cases of infantile diarrhea. J Tradit Chin Med 1987; 7: 203-204. 
  36. Lui CL, Heddle RJ, Kupa A, Coates T, Roberts-Thomson PJ. Bee venom hypersensitivity and its management: patients perception of venom desensitisation. Asian Pac J Allergy Immunol 1995; 13: 95-100. 
  37. Maitip J, Mookhploy W, Khorndork S, Chantawannakul P. Comparative study of antimicrobial properties of bee venom extracts and melittins of honey bees. Antibiotics (Basel) 2021; 10: 1503. 
  38. Martini CL, Lange CC, Brito MA, Ribeiro JB, Mendonca LC, Vaz EK. Characterisation of penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine milk samples in Minas Gerais, Brazil. J Dairy Res 2017; 84: 202-205.  https://doi.org/10.1017/S0022029917000061
  39. McDougall S, Arthur DG, Bryan MA, Vermunt JJ, Weir AM. Clinical and bacteriological response to treatment of clinical mastitis with one of three intramammary antibiotics. N Z Vet J 2007; 55: 161-170.  https://doi.org/10.1080/00480169.2007.36762
  40. Oh BY, Han SM, Oh YI, Kim ST. Effects of the blood chemistry of honeybee (Apis mellifera L.) venom on the Hanwoo calves. Korean J Vet Serv 2011; 34: 87-93.  https://doi.org/10.7853/kjvs.2011.34.1.087
  41. Pucca MB, Cerni FA, Oliveira IS, Jenkins TP, Argemi L, Sorensen CV, et al. Bee updated: current knowledge on bee venom and bee envenoming therapy. Front Immunol 2019; 10: 2090. 
  42. Rabello RF, Bonelli RR, Penna BA, Albuquerque JP, Souza RM, Cerqueira AMF. Antimicrobial resistance in farm animals in Brazil: an update overview. Animals (Basel) 2020; 10: 552. 
  43. Roberson JR, Warnick LD, Moore G. Mild to moderate clinical mastitis: efficacy of intramammary amoxicillin, frequent milk-out, a combined intramammary amoxicillin, and frequent milk-out treatment versus no treatment. J Dairy Sci 2004; 87: 583-592.  https://doi.org/10.3168/jds.S0022-0302(04)73200-2
  44. Roesch M, Perreten V, Doherr MG, Schaeren W, Schallibaum M, Blum JW. Comparison of antibiotic resistance of udder pathogens in dairy cows kept on organic and on conventional farms. J Dairy Sci 2006; 89: 989-997.  https://doi.org/10.3168/jds.S0022-0302(06)72164-6
  45. Sardana K, Mathachan SR, Gupta T. Antibiotic resistance in acne an emergent need to recognize resistance to azithromycin and restrict its unapproved use in acne vulgaris. J Eur Acad Dermatol Venereol 2021; 35: e347-e348.  https://doi.org/10.1111/jdv.17099
  46. Schukken YH, Gonzalez RN, Tikofsky LL, Schulte HF, Santisteban CG, Welcome FL, et al. CNS mastitis: nothing to worry about? Vet Microbiol 2009; 134: 9-14.  https://doi.org/10.1016/j.vetmic.2008.09.014
  47. Sciani JM, Marques-Porto R, Lourenco Junior A, Orsi Rde O, Ferreira Junior RS, Barraviera B, et al. Identification of a novel melittin isoform from Africanized Apis mellifera venom. Peptides 2010; 31: 1473-1479.  https://doi.org/10.1016/j.peptides.2010.05.001
  48. Seo BK, Han K, Kwon O, Jo DJ, Lee JH. Efficacy of bee venom acupuncture for chronic low back pain: a randomized, double-blinded, sham-controlled trial. Toxins (Basel) 2017; 9: 361. 
  49. Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, et al. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet Q 2021; 41: 107-136.  https://doi.org/10.1080/01652176.2021.1882713
  50. Singh PJ, Singh KB. A study on economic losses of mastitis in India. Indian J Dairy Sci 1994; 47: 265-272. 
  51. Tanuwidjaja I, Svecnjak L, Gugic D, Levanic M, Juric S, Vincekovic M, et al. Chemical profiling and antimicrobial properties of honey bee (Apis mellifera L.) venom. Molecules 2021; 26: 3049. 
  52. Tsai LC, Lin YW, Hsieh CL. Effects of bee venom injections at acupoints on neurologic dysfunction induced by thoracolumbar intervertebral disc disorders in canines: a randomized, controlled prospective study. Biomed Res Int 2015; 2015: 363801. 
  53. Xu T, Zhu H, Liu R, Wu X, Chang G, Yang Y, et al. The protective role of caffeic acid on bovine mammary epithelial cells and the inhibition of growth and biofilm formation of Gram-negative bacteria isolated from clinical mastitis milk. Front Immunol 2022; 13: 1005430. 
  54. Zhang S, Liu Y, Ye Y, Wang XR, Lin LT, Xiao LY, et al. Bee venom therapy: potential mechanisms and therapeutic applications. Toxicon 2018; 148: 64-73. https://doi.org/10.1016/j.toxicon.2018.04.012