DOI QR코드

DOI QR Code

자기공명영상에서 ACR 팬텀을 이용한 잡음전력스펙트럼 평가

Evaluation of the Noise Power Spectrum by Using American College of Radiology Phantom for Magnetic Resonance Imaging

  • 민정환 (신구대학교 방사선학과) ;
  • 정회원 (백석문화대학교 방사선학과 )
  • Jung-Whan Min (Department of Radiological Science, Shingu University) ;
  • Hoi-Woun Jeong (Department of Radiological Science, Baekseok Culture University)
  • 투고 : 2023.12.07
  • 심사 : 2024.01.10
  • 발행 : 2024.02.28

초록

This study was purpose to quantitative evaluation of comparison of the image intensity uniformity and noise power spectrum (NPS) by using American college of radiology (ACR) phantom for magnetic resonance imaging (MRI). The MRI was used achiva 3.0T MRI and discovery MR 750, 3.0T, the head and neck matrix shim SENSE head coil were 32 channels receive MR coil. The MRI was used parameters of image sequence for ACR standard and general hospital. NPS value of the ACR standard T2 vertical image in GE equipment was 7.65E-06 when the frequency was 1.0 mm-1. And the NPS value of the ACR hospital T1 region of interest (ROI) 9 over all vertical image in Philips equipment was 9E-08 when the frequency was 1.0 mm-1 and the NPS value of the hospital T2 ROI 9 over all vertical image in Philips equipment was 1.06E-07 when the frequency was 1.0 mm-1. NPS was used efficiently by using a general hospital vertical sequence more than the standard vertical sequence method by using the ACR phantom. Furthermore NPS was the quantitative quality assurance (QA) assessment method for noise and image intensity uniformity characteristics was applied mutatis mutandis, and the results values of the physical imaging NPS of the 3.0T MRI and ACR phantom were presented.

키워드

과제정보

This study was supported by from the Shingu University Industry-Academic Cooperation Foundation Grant 2023.

참고문헌

  1. Miyati T, Fujita H, Kasuga T, et al. Measurements of MTF and SNR(f) using a subtraction method im MRI. Physics in Medicine and Biology. 2002;47:2961-72. Retrieved from https://pubmed.ncbi.nlm.nih.gov/12222859/ https://doi.org/10.1088/0031-9155/47/16/311
  2. Hahm HK. The study on the subject development of MRI image quality evaluation. Department of Radiology, Graduate school of Public Health Eulji University; 2008. Retrieved from https://lib.eulji.ac.kr/eul/data/data/DataSearchList.csp?New=C0&SrchCondi01=%E2%96%B2&QSrchType01=&SrchT ype01=T0&SrchKey01=The+study+on+the+subject+development+of+MRI+image+quality+evaluation+Department+of+Radiology&type=&SrchTarget=B
  3. Lee JW, Ahn KJ, Lee SK, Na DG, Oh CH, Chang YM, et al. Usefulness of ACR MRI phantom for quality assurance of MRI instruments. Journal Korean Society Radiology. 2006;54(1):47-55. Retrieved from https://www.researchgate.net/publication/292951275_Usefulness_of_ACR_MRI_Phantom_for_Quality_Assurance_of_MRI_Instruments https://doi.org/10.3348/jkrs.2006.54.1.47
  4. American College of Radiology. Phantom test guidance for the ACR MRI accreditation program. Reston: American College of Radiology; 2000. Retrieved from https://www.acraccreditat ion.org/-/media/ACRAccreditation/Documents/MRI/LargePhantomGuidance.pdf
  5. American College of Radiology. MRI quality control manual. American College of Radiology, Reston; 2004. Retrieved from https://www.acr.org/-/media/ACR/Files/Clinical-Resources/QC-Manuals/MR_QCManual.pdf
  6. Min JW, Jeong HW, Kim KW, et al. Study on the resolution characteristics by using magnetic resonance imaging 3.0T. Journal of Radiological Science and Tec hnology. 2020;43(4):251-7. Retrieved from http://oc ean.kisti.re.kr/IS_mvpopo212L.do?method=list&poi d=ksrs1&kojic=BSSGBL&sVnc=v43n4&sFree= https://doi.org/10.17946/JRST.2020.43.4.251
  7. Min JW, Jeong HW, Kim SC. Evaluation of noise power spectrum characteristics by using magnetic resonance imaging 3.0T. Journal of Radiological Science and Technology. 2021;44(1):279-88. Retrieved from http://ocean.kisti.re.kr/IS_mvpopo212L.do?method=list&poid=ksrs1&kojic=BSSGBL&sVnc=v44n1&sFree=
  8. Min JW, Jeong HW, Han JH, et al. Evaluation of the resolution characteristics by using American college of radiology phantom for magnetic resonance imaging. Journal of Radiological Science and Technology. 2022;45(1):11-7. DOI: http://dx.doi.org/10.17946/JRST.2022.45.1.11
  9. Jeong HW, Min JW, Kim JM, et al. Performance characteristic of a CsI(Tl) flat panel detector radiography system. Journal of Radiological Science and Technology. 2012;35(2):109-17. Retrieved from http://ocean.kisti.re.kr/IS_mvpopo212L.do?method=l ist&poid=ksrs1&kojic=BSSGBL&sVnc=v35n2&sFree=
  10. Min JW, Jeong HW, Kang HK. Evaluation of the resolution characteristics by using ATS 535H phantom for ultrasound medical imaging. Journal of Radiological Science and Technology. 2023;46(1) 15-21. DOI: http://dx.doi.org/10.17946/JRST.2023.46.1.15
  11. Kim KW, Jeong HW, Min JW, et al. Measurement of image quality according to the time of computed radiography system. Journal of Radiological Science and Technology. 2015;38(4):365-74. Retrieved from http://ocean.kisti.re.kr/IS_mvpopo212L.do?method=list&poid=ksrs1&kojic=BSSGBL&sVnc=v38n4&sFree= https://doi.org/10.17946/JRST.2015.38.4.05
  12. Min JW, Jeong HW, Kim KW, et al. Comparison of noise power spectrum in measurements by using inte rnational electrotechnical commission standard devices in indirect digital radiography. Journal of Radiological Science and Technology. 2018;41(5): 457-62. Retrieved from http://ocean.kisti.re.kr/IS_mvpopo212L.do?method=list&poid=ksrs1&kojic=BSSGBL&sVnc=v41n5&sFree= https://doi.org/10.17946/JRST.2018.41.5.457
  13. IEC(International Electrotechnical Commission) 62220-1. Medical electrical equipment Characteristics of digital X-ray imaging devices Part 1: Determination of the detective quantum efficiency. Geneva; 2003. Retrieved from http://websites.umich.edu/~ners580/ners-bioe_481/lectures/pdfs/2003-10-IEC_62220-DQE.pdf
  14. Och JG, Clarke GD, Sobol WT, Rosen CW, Mun SK. Acceptance testing of magnetic resonance imaging systems: Report of AAPM nuclear magnetic resonance task group No. 6. Med Phys. 1992;19:217-29. Retrieved from https://pubmed.ncbi.nlm.nih.gov/1620053/ https://doi.org/10.1118/1.596903
  15. Choi YJ, Kweon DC. Evaluation of TOF MR anagiography and imaging for the half scan factor of cerebral artery. Journal of the Korean Magnetics Society. 2016;26(3):92-8. Retrieved from https://www.magnetics.or.kr/submission/journal/pages/archives.vm?isrc=tkms.allforone21.com/tkms/service/article_list.do&vol=26&no=3&year=2016&month=06 https://doi.org/10.4283/JKMS.2016.26.3.092
  16. Mohapatra SM, Turley JD, Prince JR, et al. Transfer function measurement and analysis for magnetic resonance imager. Med. Phys, 1991;18(6):1141-4. Retrieved from https://pubmed.ncbi.nlm.nih.gov/1753895/ https://doi.org/10.1118/1.596622
  17. Fujita H, Tasai DY, Itoh T, et al. A simple method for determining the modulation transfer function in digital radiography. IEEE Trans Med Imaging. 1992; 11(1):34-9. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18218354/ https://doi.org/10.1109/42.126908
  18. Samei E, Flynn MJ, Reimann DA, et al. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Medical Physics. 1998;25(1):102-13. Retrieved from https://pubmed.ncbi.nlm.nih.gov/9472832/ https://doi.org/10.1118/1.598165
  19. Greer PB, Van Doorn T. Evaluation of an algorithm for the assessment of the MTF using an edge method. Medical Physics. 2000;27(9):2048-59. Retrieved from https://pubmed.ncbi.nlm.nih.gov/11011732/ 1011732
  20. Steckner MC, Drost DJ, Prato FS. Computing the modulation transfer function of a magnetic resonance imager. Med. Phys. 1994;21(3):483-9. Retrieved from https://pubmed.ncbi.nlm.nih.gov/8208224/ https://doi.org/10.1118/1.597310