Acknowledgement
This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022R1A2C2091517).
References
- Abraham, A. (2005), "Artificial neural networks", Handbook of Measuring System Design.
- Agbulut, U,, Gurel, A.E. and Bicen, Y. (2021), "Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison", Renew. Sustain. Energ. Rev., 135, 110114. https://doi.org/10.1016/j.rser.2020.110114.
- Almajed, A., Lateef, M.A., Moghal, A.A.B. and Lemboye, K. (2021), "State-of-the-art review of the applicability and challenges of microbial-induced calcite precipitation (MICP) and enzyme-induced calcite precipitation (EICP) techniques for geotechnical and geoenvironmental applications", Crystals, 11(4), 370. https://doi.org/10.3390/cryst11040370.
- Altmann, A., Tolosi, L., Sander, O. and Lengauer, T. (2010), "Permutation importance: a corrected feature importance measure", Bioinformatics, 26(10), 1340-1347. https://doi.org/10.1093/bioinformatics/btq134.
- Benayoun, F., Boumezerane, D., Bekkouche, S.R.and Bendada, L. (2020), "Application of genetic algorithm method for soil nailing parameters optimization", Proceedings of the IOP Conference Series: Materials Science and Engineering.
- Bharti, S.N. and Swetha, G. (2016), "Need for bioplastics and role of biopolymer PHB: a short review", J. Pet. Environ. Biotechnol., 7(272), 2. https://doi.org/10.4172/2157-7463.1000272.
- Bhattacharya, B. and Solomatine, D.P. (2006), "Machine learning in soil classification", Neural Networks, 19(2), 186-195. https://doi.org/10.1016/j.neunet.2006.01.005.
- Bobbo, T., Biffani, S., Taccioli, C., Penasa, M. and Cassandro, M. (2021), "Comparison of machine learning methods to predict udder health status based on somatic cell counts in dairy cows", Scientific Reports, 11(1), 1-10. https://doi.org/10.1038/s41598-021-93056-4.
- Breiman, L. (2001), "Random forests", Mach.Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324.
- Breuel, T.M. (2015), "The effects of hyperparameters on SGD training of neural networks", arXiv Preprint arXiv:1508.02788.
- Bullard, J.W., Jennings, H.M., Livingston, R.A., Nonat, A., Scherer, G.W., Schweitzer, J.S., Scrivener, K.L. and Thomas, J.J. (2011), "Mechanisms of cement hydration", Cem.Concr.Res., 41(12), 1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011.
- Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1.
- Cameron, A.C. and Windmeijer, F.A. (1997), "An R-squared measure of goodness of fit for some common nonlinear regression models", J. Econ., 77(2), 329-342. https://doi.org/10.1016/S0304-4076(96)01818-0.
- Chang, I. and Cho, G. (2012), "Strengthening of Korean residual soil with -l,3/1,6-glucan biopolymer", Constr. Build. Mater., 30(1), 30. https://doi.org/10.1016/j.conbuildmat.2011.11.030.
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G. (2015a), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
- Chang, I., Jeon, M. and Cho, G. (2015b), "Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries", Int. J. Polymer Sci., https://doi.org/10.1155/2015/326745.
- Chang, I., Prasidhi, A.K., Im, J. and Cho, G. (2015c), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
- Chang, I., Prasidhi, A.K., Im, J., Shin, H. and Cho, G. (2015d), "Soil treatment using microbial biopolymers for anti-desertification purposes", Geoderma, 253-254, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.
- Chang, I., Im, J. and Cho, G. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251.
- Chang, I., Im, J., Lee, S. and Cho, G. (2017), "Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying", Constr. Build. Mater., 143, 210-221. https://doi.org/10.1016/j.conbuildmat.2017.02.061.
- Chang, I. and Cho, G. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
- Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y., Im, J. and Cho, G. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Transport. Geotech., 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385.
- Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., Van Donkelaar, A., Hvidtfeldt, U.A. and Katsouyanni, K. (2019), "A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide", Environ. Int., 130, 104934. https://doi.org/10.1016/j.envint.2019.104934.
- Choi, S., Chang, I., Lee, M., Lee, J., Han, J. and Kwon, T. (2020), "Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers", Constr. Build. Mater., 246, 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415.
- Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., Huang, Y. and Cohen, I. (2009), "Pearson correlation coefficient", Noise Reduction in Speech Processing, 1-4. https://doi.org/10.1007/978-3-642-00296-0_5.
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018.
- Drucker, H., Burges, C.J., Kaufman, L., Smola, A. and Vapnik, V. (1996), "Support vector regression machines", Adv. Neural Inform. Process. Syst., 9.
- Fatehi, H., Ong, D.E., Yu, J. and Chang, I. (2021), "Biopolymers as green binders for soil improvement in geotechnical applications: A review", Geosciences, 11(7), 291. https://doi.org/10.3390/geosciences11070291.
- Fatehi, H., Ong, D.E., Yu, J. and Chang, I. (2023), "The effects of particle size distribution and moisture variation on mechanical strength of biopolymer-treated soil", Polymers, 15(6), 1549. https://doi.org/10.3390/polym15061549.
- Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1.
- Goh, A.T. and Goh, S.H. (2007), "Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data", Comput. Geotech., 34(5), 410-421. https://doi.org/10.1016/j.compgeo.2007.06.001.
- Gonos, I.F. and Stathopulos, I.A. (2005), "Estimation of multilayer soil parameters using genetic algorithms", IEEE Trans.Power Del., 20(1), 100-106. https://doi.org/10.1109/TPWRD.2004.836833.
- Kim, M. and Gilley, J.E. (2008), "Artificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areas", Comput. Electron. Agric., 64(2), 268-275. https://doi.org/10.1016/j.compag.2008.05.021.
- Kiran, S., Lal, B. and Tripathy, S.S. (2016), "Shear strength prediction of soil based on probabilistic neural network", Indian J. Sci. Technol., 9(41), 1-6. https://doi.org/10.17485/ijst/2016/v9i41/124740.
- Konstantinou, C., Wang, Y. and Biscontin, G. (2023), "A systematic study on the influence of grain characteristics on hydraulic and mechanical performance of MICP-treated porous media", Transport. Porous Media, 147(2), 305-330. https://doi.org/10.1007/s11242-023-01909-5.
- Kwon, Y., Chang, I., Lee, M. and Cho, G. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.
- Kwon, Y., Moon, J., Cho, G., Kim, Y. and Chang, I. (2023), "Xanthan gum biopolymer-based soil treatment as a construction material to mitigate internal erosion of earthen embankment: A field-scale", Constr. Build. Mater., 389, 131716. https://doi.org/10.1016/j.conbuildmat.2023.131716.
- Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z., Tahir, M.M. and Mohamad, E.T. (2017), "Improvement of problematic soils with biopolymer-an environmentally friendly soil stabilizer", J. Mater. Civ. Eng., 29(2), 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
- Lee, S., Chung, M., Park, H.M., Song, K. and Chang, I. (2019), "Xanthan Gum Biopolymer as Soil-Stabilization Binder for Road Construction Using Local Soil in Sri Lanka", J. Mater. Civ. Eng., 31(11), 06019012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002909.
- Ma, J., Xia, D., Guo, H., Wang, Y., Niu, X., Liu, Z. and Jiang, S. (2022), "Metaheuristic-based support vector regression for landslide displacement prediction: A comparative study", Landslides, 19(10), 2489-2511. https://doi.org/10.1007/s10346-022-01923-6.
- Mekonnen, E., Amdie, Y., Etefa, H., Tefera, N. and Tafesse, M. (2022), "Stabilization of expansive black cotton soil using bioenzymes produced by ureolytic bacteria", Int. J. Geo-Eng., 13(1), 10. https://doi.org/10.1186/s40703-022-00175-6.
- Molnar, C. (2020), Interpretable machine learning, Lulu. com.
- Nikou, M., Mansourfar, G. and Bagherzadeh, J. (2019), "Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms", Intelligent Systems in Accounting, Finance and Management, 26(4), 164-174. https://doi.org/10.1002/isaf.1459
- Njock, P.G.A., Shen, S., Zhou, A. and Lyu, H. (2020), "Evaluation of soil liquefaction using AI technology incorporating a coupled ENN/t-SNE model", Soil Dyn. Earthq. Eng., 130, 105988.
- Pham, B.T., Hoang, T., Nguyen, D. and Bui, D.T. (2018), "Prediction of shear strength of soft soil using machine learning methods", Catena, 166, 181-191. https://doi.org/10.1016/j.catena.2018.04.004
- Potdar, K., Pardawala, T.S. and Pai, C.D. (2017), "A comparative study of categorical variable encoding techniques for neural network classifiers", Int. J. Comput. Appl., 175(4), 7-9. https://doi.org/10.5120/ijca2017915495
- Reed, M. and Montoya, B.M. (2023), "Influence of the coefficient of uniformity on bio-cemented sands: a microscale investigation", Proceedings of the 8th International Symposium on DEFORMATION CHARACTERISTICS OF GEOMATERIALS, .
- Seo, S., Lee, M., Im, J., Kwon, Y., Chung, M., Cho, G. and Chang, I. (2021), "Site application of biopolymer-based soil treatment (BPST) for slope surface protection: in-situ wet-spraying method and strengthening effect verification", Constr. Build. Mater., 307, 124983. https://doi.org/10.1016/j.conbuildmat.2021.124983.
- Shao, Y. and Lunetta, R.S. (2012), "Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points", ISPRS J. Photogramm. Remote Sens., 70, 78-87. https://doi.org/10.1016/j.isprsjprs.2012.04.001.
- Willmott, C.J. and Matsuura, K. (2005), "Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance", Climate Res., 30(1), 79-82. https://doi.org/10.3354/cr030079
- Wiszniewski, M., Skutnik, Z., Biliniak, M. and Cabalar, A.F. (2017), "Some geomechanical properties of a biopolymer treated medium sand", Annals of Warsaw University of Life Sciences-SGGW Land Reclamation, 49(3), 201-212. https://doi.org/10.1515/sggw-2017-0016
- Worrell, E., Price, L., Martin, N., Hendriks, C. and Meida, L.O. (2001), "Carbon dioxide emissions from the global cement industry", Annu. Rev. Energ. Environ., 26(1), 303-329. https://doi.org/10.1146/annurev.energy.26.1.303
- Zhang, X., Yao, L., Huang, C., Sheng, Q.Z.and Wang, X. (2017), "Intent recognition in smart living through deep recurrent neural networks", Proceedings of the Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II 24.