DOI QR코드

DOI QR Code

Monovalent Ion Selective Anion-Exchange Membranes for Reverse Electrodialysis Application

역전기투석 응용을 위한 1가 이온 선택성 음이온교환막

  • Ji-Hyeon Lee (Department of Green Chemical Engineering, Sangmyung University) ;
  • Moon-Sung Kang (Department of Green Chemical Engineering, Sangmyung University)
  • 이지현 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2023.12.09
  • Accepted : 2024.01.18
  • Published : 2024.02.29

Abstract

Reverse electrodialysis (RED) is an electro-membrane process employing ion-exchange membranes (IEMs) that can harvest electric energy from the concentration difference between seawater and river water. Multivalent ions contained in seawater and river water bind strongly to the fixed charge groups of the IEM, causing high resistance and reducing open-circuit voltage and power density through uphill transport. In this study, a pore-filled anion-exchange membrane (PFAEM) with excellent monovalent ion selectivity and electrochemical properties was fabricated and characterized for RED application. The monovalent ion selectivity of the prepared membrane was 3.65, which was superior to a commercial membrane (ASE, Astom Corp.) with a selectivity of 1.27 under the same conditions. Additionally, the prepared membrane showed excellent electrochemical properties, including low electrical resistance compared to ASE. As a result of evaluating RED performance under seawater of 0.459 M NaCl/0.0510 M Na2SO4 and river water of 0.0153 M NaCl/0.0017 M Na2SO4, the maximum power density of 1.80 W/m2 was obtained by applying the prepared membrane, which is a 40.6% improved output performance compared to the ASE membrane.

역전기투석(reverse electrodialysis, RED)은 해수와 담수의 농도 차로부터 에너지를 얻는 이온교환막을 이용한 전기막 공정이다. 해수와 담수에 포함된 다가 이온은 이온교환막의 고정 전하 그룹에 강하게 결합하여 높은 저항을 유발하며 uphill transport를 통해 개방회로 전압과 전력 밀도를 저하시킬 수 있다. 본 연구에서는 RED 응용을 위해 1가 이온 선택성 및 전기화학적 특성이 우수한 세공충진 음이온교환막(pore-filled anion-exchange membrane, PFAEM)을 제조하였다. 제조된 막의 1가 이온 선택성은 3.65였으며 동일 조건에서 1.27의 선택성을 갖는 상용막(ASE, Astom Corp.)보다 우수한 수준을 나타내었다. 또한 제조된 막은 ASE 대비 낮은 전기적 저항 등 우수한 전기화학적 특성을 나타내었다. 0.459 M NaCl/0.0510 M Na2SO4의 해수와 0.0153 M NaCl/0.0017 M Na2SO4의 담수 조건에서 RED 성능을 평가한 결과 제조된 막을 적용하여 1.80 W/m2의 최대 전력 밀도를 얻었으며 이는 ASE 막 대비 40.6% 향상된 출력 성능이었다.

Keywords

Acknowledgement

본 연구는 2023년도 상명대학교 교내연구과제 지원을 받아 수행되었음(2023-A000-0185).

References

  1. E. Altiok, T. Z. Kaya, E. Guler, N. Kabay, and M. Bryjak, "Performance of reverse electrodialysis system for salinity gradient energy generation by using a commercial ion exchange membrane pair with homogeneous bulk structure", Water, 13, 814 (2021). 
  2. C. Seyfried, H. Palko, and L. Dubbs, "Potential local environmental impacts of salinity gradient energy: A review", Renew. Sust. Energ. Rev., 102, 111 (2019). 
  3. J. W. Post, J. Veerman, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, K. Nymeijer, and C. J. N. Buisman, "Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis", J. Membr. Sci., 288, 218 (2007). 
  4. D. Jin, R. Xi, S. Xu, P. Wang, and X. Wu, "Numerical simulation of salinity gradient power generation using reverse electrodialysis", Desalination, 512, 115132 (2021). 
  5. D. A. Vermaas, E. Guler, M. Saakes, and K. Nijmeijer, "Theoretical power density from salinity gradients using reverse electrodi-alysis", Energy Procedia, 20, 170 (2012). 
  6. T. Rijnaarts, E. Huerta, W. van Baak, and K. Nijmeijer, "Effect of divalent cations on RED performance and cation exchange membrane selection to enhance power densities", Environ. Sci. Technol., 51, 13028 (2017). 
  7. T. Z. Kaya, E. Altiok, E. Guler, and N. Kabay, "Effect of co-existing ions on salinity gradient power generation by reverse electrodialysis using different ion exchange membrane pairs", Membranes, 12, 1240 (2022). 
  8. A. T. Besha,, M. T. Tsehaye, D. Aili, W. Zhang, and R. A. Tufa, "Design of monovalent ion selective membranes for reducing the impacts of multivalent ions in reverse electrodialysis", Membranes, 10, 7 (2020). 
  9. J. Jang, Y. Kang, J.-H. Han, K. Jang, C.-M. Kim, and I. S. Kim, "Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes", Desalination, 491, 114540 (2020). 
  10. A. Nazif, H. Karkhanechi, E. Saljoughi, S. M. Mousavi, and H. Matsuyama, "Recent progress in membrane development, affecting parameters, and applications of reverse electrodialysis: A review", J. Water Process Eng., 47, 102706 (2022). 
  11. Z. Wang, J. Li, H. Wang, M. Li, L. Wang, and X. Kong, "The effect of trace ions on the performance of reverse electrodialysis using brine/seawater as working pairs", Front. Energy Res., 10, 919878 (2022). 
  12. D. Pintossi, C.-L. Chen, M. Saakes, K. Nijmeijer, and Z. Borneman, "Influence of sulfate on anion exchange membranes in reverse electrodialysis", npj Clean Water, 3, 29 (2020). 
  13. A. T. Besha, M. T. Tsehaye, D. Aili, W. Zhang, and R. A. Tufa, "Design of monovalent ion selective membranes for reducing the impacts of multivalent ions in reverse electrodialysis", Membranes, 10, 7 (2020). 
  14. J. Pan, J. Ding, R. Tan, G. Chen, Y. Zhao, C. Gao, B. Van der Bruggen, and J. Shen, "Preparation of a monovalent selective anion exchange membrane through constructing a covalently crosslinked interface by electro-deposition of polyethyleneimine", J. Membr. Sci., 539, 263 (2017). 
  15. H. Liu, H. Ruan, Y. Zhao, J. Pan, A. Sotto, C. Gao, B. Van der Bruggen, and J. Shen, "A facile avenue to modify polyelectrolyte multilayers on anion exchange membranes to enhance monovalent selectivity and durability simultaneously", J. Membr. Sci., 543, 310 (2017). 
  16. J. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, "Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system", J. Membr. Sci., 330, 65 (2009). 
  17. J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, and T. Xu, "Ion exchange membranes: New developments and applications", J. Membr. Sci., 522, 267 (2017). 
  18. E. Guler, W. van Baak, M. Saakes, amd K. Nijmeijer, "Monovalent-ion-selective membranes for reverse electrodialysis", J. Membr. Sci., 455, 267 (2014). 
  19. H. Gao, B. Zhang, X. Tong, and Y. Chen. "Monovalent-anion selective and antifouling polyelectrolytes multilayer anion exchange membrane for reverse electrodialysis", J. Membr. Sci., 567, 68 (2018). 
  20. J. Krivcik, D. Nedela, and R. Valek, "Ion-exchange membrane reinforcing", Desalination Water Treat., 56, 3214 (2015). 
  21. X. Huang, Z. Zhang, X.-Y. Kong, Y. Sun, C. Zhu, P. Liu, J. Pang, L. Jiang, and L. Wen, "Engineered PES/SPES nanochannel membrane for salinity gradient power generation", Nano Energy, 59, 354 (2019). 
  22. G. Q. Chen, K. Wei, A. Hassanvand, B. D. Freeman, and S. E. Kentish. "Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes", Water Res., 175, 115681 (2020). 
  23. B. Wang, J. Wang, H. Yan, R. Li, R. Fu, C. Jiang, V. Nikonenko, N. Pismenskaya, Y. Wang, and T. Xu, "Ionic liquid-based pore-filling anion-exchange membranes enable fast large-sized metallic anion migration in electrodialysis", J. Membr. Sci., 670, 121348 (2023). 
  24. J. Choi, W.-S. Kim, H. K. Kim, S. C. Yang, and N. J. Jeong, "Ultra-thin pore-filling membranes with mirror-image wave patterns for improved power density and reduced pressure drops in stacks of reverse electrodialysis", J. Membr. Sci., 620, 118885 (2021). 
  25. S. C. Yang, Y.-W. Choi, J. Choi, N. Jeong, H. Kim, J.-Y. Nam, and H. Jeong, "R2R fabrication of pore-filling cation-exchange membranes via one-time impregnation and their application in reverse electrodialysis", ACS Sustainable Chem. Eng., 7, 12200 (2019). 
  26. H. Kim, J. Choi, N. Jeong, Y.-G. Jung, H. Kim, D. Kim, and S. C. Yang, "Correlations between properties of pore-filling ion exchange membranes and performance of a reverse electrodialysis stack for high power density", Membranes, 11, 609 (2021). 
  27. H.-B. Song, D.-H. Kim, and M.-S. Kang, "Thin-reinforced anion-exchange membranes with high Ionic contents for electrochemical energy conversion processes", Membr., 12, 196 (2022). 
  28. M.-J. Choi, K.-J. Chae, F. F. Ajayi, K.-Y. Kim, H.-W. Yu, C.-W. Kim, and I. S. Kim, "Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance", Bioresour. Technol., 102, 298 (2011). 
  29. K. F. L. Hagesteijn, S. Jiang, and B. P. Ladewig, "A review of the synthesis and characterization of anion exchange membranes", J. Mater. Sci., 53, 11131 (2018). 
  30. Y.-M. Miao, Y.-X. Jia, R.-Q. Guo, and M. Wang, "Heterogeneous anion-exchange membrane: Influences of charged binders with crosslinking structure on electrodialytic performance", J. Membr. Sci., 557, 67 (2018). 
  31. L. Hao, J. Liao, Y. Jiang, J. Zhu, J. Li, Y. Zhao, B. Van der Bruggen, A. Sotto, and J. Shen, ""Sandwich"-like structure modified anion exchange membrane with enhanced monovalent selectivity and fouling resistant", J. Membr. Sci., 556, 98 (2018). 
  32. A. Leharazu-Larranaga, Y. Zhao, S. Molina, E. Garcia-Calvo, and B. Van der Bruggen, "Alternating current enhanced deposition of a monovalent selective coating for anion exchange membranes with antifouling properties", Sep. Purif. Technol., 229, 115807 (2019). 
  33. M. Irfan, L. Ge, Y. Wang, Z. Yang, and T. Xu, "Hydrophobic side chains impart anion exchange membranes with high mon-ovalent-divalent anion selectivity in electrodialysis", ACS Sustainable Chem. Eng., 7, 4429 (2019). 
  34. S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, and H. Matsuyama, "Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition", J. Membr. Sci., 431, 113 (2013). 
  35. D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016). 
  36. S. Ghanooni, B. Karimi, and N. Nikfarjam, "Preparation of a dual-functionalized acid-base macroporous polymer via high internal phase emulsion templating as a reusable catalyst for one-pot deacetalization-henry reaction", ACS Omega, 7, 30989 (2022). 
  37. K. Wieszczycka, K. Filipowiak, I. Wojciechowska, and P. Aksamitowski, "Novel ionic liquid-modified polymers for highly effective adsorption of heavy metals ions", Sep. Purif. Technol., 236, 116313 (2020). 
  38. E. Citak, H. Testici, M. Gursoy, E. Sevgili, H. T. Dagi, B. Ozturk, and M. Karaman, "Vapor deposition of quaternary ammonium methacrylate polymers with high antimicrobial activity: Synthetic route, toxicity assessment, and durability analysis", J. Vac. Sci. Technol. A, 38, 43203 (2020). 
  39. J.-J. Yin, F. Wahid, Q. Zhang, Y.-C. Tao, C. Zhong, and L.-Q. Chu, "Facile incorporation of silver nanoparticles into quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes as bifunctional antibacterial coatings", Macromol. Mater. Eng., 302, 1700068 (2017). 
  40. M. E. Atlaskina, A. A. Atlaskin, O. V. Kazarina, A. N. Petukhov, D. M. Zarubin, A. V. Nyuchev, A. V. Vorotyntsev, and I. V. Vorotyntsev, "Synthesis and comprehensive study of quaternary-ammonium-based sorbents for natural gas sweetening", Environments, 8, 134 (2021). 
  41. M.-K. Shin, H.-B. Song, and M.-S. Kang, "Reinforced ion-exchange membranes for enhancing membrane capacitive deionization", Membr. J., 33, 257 (2023). 
  42. B. Tansel, "Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects", Sep. Purif. Technol., 86, 119 (2012). 
  43. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A review of electrolyte materials and compositions for electro-chemical supercapacitors", Chem. Soc. Rev., 44, 7484 (2015).