DOI QR코드

DOI QR Code

Antioxidant activity and metabolic regulation of sodium salicylate on goat sperm at low temperature

  • Wenzheng Shen (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Yu Fu (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Haiyu Bai (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Zhiyu Zhang (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Zhikun Cao (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Zibo Liu (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Chao Yang (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Shixin Sun (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Lei Wang (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Chunhuan Ren (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Yinghui Ling (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Zijun Zhang (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Hongguo Cao (College of Animal Science and Technology, Anhui Agricultural University)
  • Received : 2023.08.30
  • Accepted : 2023.11.28
  • Published : 2024.04.01

Abstract

Objective: The purpose of this study was to explore the effect of sodium salicylate (SS) on semen preservation and metabolic regulation in goats. Methods: Under the condition of low temperature, SS was added to goat semen diluent to detect goat sperm motility, plasma membrane, acrosome, antioxidant capacity, mitochondrial membrane potential (MMP) and metabonomics. Results: The results show that at the 8th day of low-temperature storage, the sperm motility of the 20 μM SS group was 66.64%, and the integrity rates of the plasma membrane and acrosome were both above 60%, significantly higher than those of the other groups. The activities of catalase and superoxide dismutase in the sperm of the 20 μM SS group were significantly higher than those of the control group, the contents of reactive oxygen species and malondialdehyde were significantly lower than those in the control group, the MMP was significantly higher than that in the control group, and the contents of Ca2+ and total cholesterol were significantly higher than those in the control group. Through metabonomics analysis, there were significant metabolic differences between the control group and the 20 μM SS group. Twenty of the most significant metabolic markers were screened, mainly involving five metabolic pathways, of which nicotinic acid and nicotinamide metabolic pathways were the most significant. Conclusion: The results indicate that SS can effectively improve the low-temperature preservation quality of goat sperm.

Keywords

Acknowledgement

This work was supported by National Key Research and Development Program of China (2022YFD1300202), Anhui Key Research and Development Program (2023z04020003; 2023j11020001) National Natural Science Foundation of China (32272875), and Anhui Natural Science Foundation (2208085MC75).

References

  1. Alvarenga, MA, Papa FO, Neto CR. Advances in stallion semen cryopreservation. Vet Clin North Am Equine Pract 2016;32:521-30. https://doi.org/10.1016/j.cveq.2016.08.003
  2. Yanez-Ortiz I, Catalan J, Rodriguez-Gil JE, Miro J, Yeste M. Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim Reprod Sci 2022;246:106904. https://doi.org/10.1016/j.anireprosci.2021.106904
  3. Li Q, Weike S, Li Y, et al. Effects of oligomeric proanthocyanidins on quality of boar semen during liquid preservation at 17 degrees C. Anim Reprod Sci 2018;198:47-56. https://doi.org/10.1016/j.anireprosci.2018.08.047
  4. Shaoyong W, Li Q, Ren Z, et al. Effects of kojic acid on boar sperm quality and anti-bacterial activity during liquid preservation at 17C. Theriogenology 2019;140:124-35. https://doi.org/10.1016/j.theriogenology.2019.08.020
  5. Tian X, Li D, He Y, et al. Supplementation of salvianic acid A to boar semen extender to improve seminal quality and antioxidant capacity. Anim Sci J 2019;90:1142-8. https://doi.org/10.1111/asj.13263
  6. Madunic J, Horvat L, Majstorovic I, et al. Sodium salicylate inhibits urokinase activity in MDA MB-231 breast cancer cells. Clin Breast Cancer 2017;17:629-37. https://doi.org/10.1016/j.clbc.2017.03.015
  7. Odebiyi DO, Adigun OT, Kehinde MO. Effect of sodium salicylate iontophoresis in the management of hip pain in patients with sickle cell disease. Nig Q J Hosp Med 2007;17:82-6. https://doi.org/10.4314/nqjhm.v17i2.12549
  8. Kazama I, Maruyama Y, Takahashi S, Kokumai T. Amphipaths differentially modulate membrane surface deformation in rat peritoneal mast cells during exocytosis. Cell Physiol Biochem 2013;31:592-600. https://doi.org/10.1159/000350079
  9. Eidan SM. Effect on post-cryopreserved semen characteristics of Holstein bulls of adding combinations of vitamin C and either catalase or reduced glutathione to Tris extender. Anim Reprod Sci 2016;167:1-7. https://doi.org/10.1016/j.anireprosci.2016.01.014
  10. Hardie DG, Ross FA, Hawley SA. AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 2012;19:1222-36. https://doi.org/10.1016/j.chembiol.2012.08.019
  11. Feng TY, Lv DL, Zhang X, et al. Rosmarinic acid improves boar sperm quality, antioxidant capacity and energy metabolism at 17 degrees C via AMPK activation. Reprod Domest Anim 2020;55:1714-24. https://doi.org/10.1111/rda.13828
  12. Martin-Hidalgo D, Hurtado de Llera A, Calle-Guisado V, et al. AMPK function in mammalian spermatozoa. Int J Mol Sci 2018;19:3239. https://doi.org/10.3390/ijms19113293
  13. Hawley SA, Fullerton MD, Ross FA, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 2012;336:918-22. https://doi.org/10.1126/science.1215327
  14. Dasgupta B, Seibel W. Compound C/Dorsomorphin: its use and misuse as an AMPK inhibitor. In: Neumann D, Viollet B, editors. AMPK. Methods in Molecular Biology. New York, NY, USA: Humana Press; 2018. vol 1732. pp. 195-202. https://doi.org/10.1007/978-1-4939-7598-3_12
  15. Vasquez J, Florentini EA, Camargo LA, Gonzales J, Valdivia M. Hypoosmotic swelling test in epididymal ram (Ovis aries) spermatozoa. Livest Sci 2013;157:618-22. https://doi.org/10.1016/j.livsci.2013.08.023
  16. Selvaraju S, Ramya L, Parthipan S, et al. Deciphering the complexity of sperm transcriptome reveals genes governing functional membrane and acrosome integrities potentially influence fertility. Cell Tissue Res 2021;385:207-22. https://doi.org/10.1007/s00441-021-03443-6
  17. Ren F, Fang Q, Feng T, et al. Lycium barbarum and Laminaria japonica polysaccharides improve Cashmere goat sperm quality and fertility rate after cryopreservation. Theriogenology 2019;129:29-36. https://doi.org/10.1016/j.theriogenology.2019.02.011
  18. Xu D, Wu L, Yang L, et al. Rutin protects boar sperm from cryodamage via enhancing the antioxidative defense. Anim Sci J 2020;91:e13328. https://doi.org/10.1111/asj.13328
  19. Karaji RO, Kia HD, Ashrafi I. Effects of in combination antioxidant supplementation on microscopic and oxidative parameters of freeze-thaw bull sperm. Cell Tissue Bank 2014;15:461-70. https://doi.org/10.1007/s10561-013-9412-y
  20. Uribe P, Villegas JV, Boguen R, et al. Use of the fluorescent dye tetramethylrhodamine methyl ester perchlorate for mitochondrial membrane potential assessment in human spermatozoa. Andrologia 2017;49:e12753. https://doi.org/10.1111/and.12753
  21. Zhu Z, Kawai T, Umehara T, et al. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria. Free Radic Biol Med 2019;141:159-71. https://doi.org/10.1016/j.freeradbiomed.2019.06.018
  22. Lesich KA, Kelsch CB, Ponichter KL, et al. The calcium response of mouse sperm flagella: role of calcium ions in the regulation of dynein activity. Biol Reprod 2012;86:105. https://doi.org/10.1095/biolreprod.111.094953
  23. El-Seadawy IE, Kotp MS, El-Maaty AMA, Fadl AM, El-Sherbiny HR, Abdelnaby EA. The impact of varying doses of moringa leaf methanolic extract supplementation in the cryopreservation media on sperm quality, oxidants, and antioxidant capacity of frozen-thawed ram sperm. Trop Anim Health Prod 2022;54:344. https://doi.org/10.1007/s11250-022-03344-y
  24. Ai J, Wu Q, Battino M, Bai W, Tian L. Using untargeted metabolomics to profile the changes in roselle (Hibiscus sabdariffa L.) anthocyanins during wine fermentation. Food Chem 2021;364:130425. https://doi.org/10.1016/j.foodchem.2021.130425
  25. Li C, Ren C, Chen Y, et al. Changes on proteomic and metabolomic profiling of cryopreserved sperm effected by melatonin. J Proteomics 2023;273:104791. https://doi.org/10.1016/j.jprot.2022.104791
  26. Akbari E, Beheshti F, Zarmehri HA, Mousavi SY, Gholami M, Ahmadi-Soleimani SM. Comparative investigation of analgesic tolerance to taurine, sodium salicylate and morphine: involvement of peripheral muscarinic receptors. Neurosci Lett 2023;795:137041. https://doi.org/10.1016/j.neulet.2022.137041
  27. Koga T, Kawata T. Effects of food preservatives and local anesthetics on synthesis of outer membrane proteins in Vibrio parahaemolyticus. Tokushima J Exp Med 1989;36:41-5.
  28. Marson FG. Sodium salicylate and probenecid in the treatment of chronic gout; assessment of their relative effects in lowering serum uric acid levels. Ann Rheum Dis 1954;13:233-45. https://doi.org/10.1136/ard.13.3.233
  29. Tsai TY, Lou SL, Wong KL, et al. Suppression of Ca2+ influx in endotoxin-treated mouse cerebral cortex endothelial bEND.3 cells. Eur J Pharmacol 2015;755:80-7. https://doi.org/10.1016/j.ejphar.2015.03.001
  30. Lim SC, Kim SM, Choi JE, et al. Sodium salicylate switches glucose depletion-induced necrosis to autophagy and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells. Oncol Rep 2008;19:1165-71. https://doi.org/10.3892/or.19.5.1165
  31. Bao W, Luo Y, Wang D, Li J, Wu X, Mei W. Sodium salicylate modulates inflammatory responses through AMP-activated protein kinase activation in LPS-stimulated THP-1 cells. J Cell Biochem 2018;119:850-60. https://doi.org/10.1002/jcb.26249
  32. Li RN, Zhu ZD, Zheng Y, et al. Metformin improves boar sperm quality via 5 '-AMP-activated protein kinase-mediated energy metabolism in vitro. Zool Res 2020;41:527-38. https://doi.org/10.24272/j.issn.2095-8137.2020.074
  33. Hurtado de Llera A, Martin-Hidalgo D, Gil MC, Garcia- Marin LJ, Bragado MJ. AMPK up-activation reduces motility and regulates other functions of boar spermatozoa. Mol Hum Reprod 2015;21:31-45. https://doi.org/10.1093/molehr/gau091
  34. Zhu Z, Li R, Fan X, et al. Resveratrol improves boar sperm quality via 5 ' AMP-activated protein kinase activation during cryopreservation. Oxid Med Cell Longev 2019;2019:5921503. https://doi.org/10.1155/2019/5921503
  35. Wang W, Ye SD, Zhou KQ, Wu LM, Huang YN. High doses of salicylate and aspirin are inhibitory on acid-sensing ion channels and protective against acidosis-induced neuronal injury in the rat cortical neuron. J Neurosci Res 2012;90:267-77. https://doi.org/10.1002/jnr.22742
  36. Khandelia H, Witzke S, Mouritsen OG. Interaction of salicylate and a terpenoid plant extract with model membranes: reconciling experiments and simulations. Biophys J 2010;99:3887-94. https://doi.org/10.1016/j.bpj.2010.11.009
  37. Gleitsman KR, Tateyama M, Kubo Y. Structural rearrangements of the motor protein prestin revealed by fluorescence resonance energy transfer. Am J Physiol Cell Physiol 2009;297:C290-8. https://doi.org/10.1152/ajpcell.00647.2008
  38. Hopp AK, Gruter P, Hottiger MO. Regulation of glucose metabolism by NAD(+) and ADP-ribosylation. Cells 2019;8:890. https://doi.org/10.3390/cells8080890
  39. Ma D, Hu L, Wang J, et al. Nicotinamide mononucleotide improves spermatogenic function in streptozotocin-induced diabetic mice via modulating the glycolysis pathway. Acta Biochim Biophys Sin 2022;54:1314-24. https://doi.org/10.3724/abbs.2022099
  40. Torres MA, Pedrosa AC, Novais FJ, et al. Metabolomic signature of spermatozoa established during holding time is responsible for differences in boar sperm freezability. Biol Reprod 2022;106:213-26. https://doi.org/10.1093/biolre/ioab200