Acknowledgement
The authors sincerely thank Miguel Perez-Enciso, at Universitat Autonoma de Barcelona (UAB), for valuable comments on the manuscript.
References
- Sasaki Y, Koketsu Y. Sows having high lifetime efficiency and high longevity associated with herd productivity in commercial herds. Livest Sci 2008;118:140-6. https://doi.org/10.1016/j.livsci.2007.12.029
- Onteru SK, Fan B, Nikkila MT, Garrick DJ, Stalder KJ, Rothschild MF. Whole-genome association analyses for lifetime reproductive traits in the pig. J Anim Sci 2011;89:988-95. https://doi.org/10.2527/jas.2010-3236
- Iida R, Pineiro C, Koketsu Y. High lifetime and reproductive performance of sows on southern European Union commercial farms can be predicted by high numbers of pigs born alive in parity one. J Anim Sci 2015;93:2501-8. https://doi.org/10.2527/jas.2014-8781
- Sevon-Aimonen M, Uimari P. Heritability of sow longevity and lifetime prolificacy in Finnish Yorkshire and Landrace pigs. Agric Food Sci 2013;22:325-30. https://doi.org/10.23986/afsci.7991
- Serenius T, Stalder KJ. Length of productive life of crossbred sows is affected by farm management, leg conformation, sow's own prolificacy, sow's origin parity and genetics. Animal 2007;1:745-50. https://doi.org/10.1017/S175173110769185X
- Noppibool U, Koonawootrittriron S, Elzo MA, Suwanasopee T. Factors affecting length of productive life and lifetime production traits in a commercial swine herd in Northern Thailand. Agric Nat Resour 2016;50:71-4. https://doi.org/10.1016/j.anres.2015.07.001
- Paixao G, Martins A, Esteves A, Payan-Carreira R, Carolino N. Genetic parameters for reproductive, longevity and lifetime production traits in Bisaro pigs. Livest Sci 2019;225:129-34. https://doi.org/10.1016/j.livsci.2019.05.010
- Meuwissen T, Hayes B, Goddard M. Accelerating improvement of livestock with genomic selection. Annu Rev Anim Biosci 2013;1:221-37. https://doi.org/10.1146/annurev-animal-031412-103705
- de Los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 2013;193:327-45. https://doi.org/10.1534/genetics.112.143313
- Gianola D, Rosa GJM. One hundred years of statistical developments in animal breeding. Annu Rev Anim Biosci 2015;3:19-56. https://doi.org/10.1146/annurev-animal-022114-110733
- Calus MPL, Veerkamp RF. Accuracy of multi-trait genomic selection using different methods. Genet Sel Evol 2011;43:26. https://doi.org/10.1186/1297-9686-43-26
- Cheng H, Kizilkaya K, Zeng J, Garrick D, Fernando R. Genomic prediction from multiple-trait Bayesian regression methods using mixture priors. Genetics 2018;209:89-103. https://doi.org/10.1534/genetics.118.300650
- Mehrban H, Naserkheil M, Lee D, Ibanez-Escriche N. Multitrait single-step GBLUP improves accuracy of genomic prediction for carcass traits using yearling weight and ultrasound traits in Hanwoo. Front Genet 2021;12:692356. https://doi.org/10.3389/fgene.2021.692356
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-44. https://doi.org/10.1038/nature14539
- Eraslan G, Avsec Z, Gagneur J, Theis FJ. Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 2019;20:389-403. https://doi.org/10.1038/s41576-019-0122-6
- Kasani PH, Oh SM, Choi YH, et al. A computer vision-based approach for behavior recognition of gestating sows fed different fiber levels during high ambient temperature. J Anim Sci Technol 2021;63:367-79. https://doi.org/10.5187/jast.2021.e35
- Kim M, Choi Y, Lee J, Sa S, Cho H. A deep learning-based approach for feeding behavior recognition of weanling pigs. J Anim Sci Technol 2021;63:1453-63. https://doi.org/10.5187/jast.2021.e127
- Montesinos-Lopez OA, Montesinos-Lopez A, Perez-Rodriguez P, et al. A review of deep learning applications for genomic selection. BMC Genomics 2021;22:19. https://doi.org/10.1186/s12864-020-07319-x
- Perez-Enciso M, Zingaretti LM. A guide on deep learning for complex trait genomic prediction. Genes 2019;10:553. https://doi.org/10.3390/genes10070553
- Bellot P, de los Campos G, Perez-Enciso M. Can deep learning improve genomic prediction of complex human traits? Genetics 2018;210:809-19. https://doi.org/10.1534/genetics.118.301298
- Waldmann P. Approximate Bayesian neural networks in genomic prediction. Genet Sel Evol 2018;50:70. https://doi.org/10.1186/s12711-018-0439-1
- Abdollahi-Arpanahi R, Gianola D, Penagaricano F. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes. Genet Sel Evol 2020;52:12. https://doi.org/10.1186/s12711-020-00531-z
- Montesinos-Lopez OA, Montesinos-Lopez A, Crossa J, Gianola D, Hernandez-Suarez CM, Martin-Vallejo J. Multi-trait, multi-environment deep learning modeling for genomic-enabled prediction of plant traits. G3-Genes Genomes Genet 2018;8:3829-40. https://doi.org/10.1534/g3.118.200728
- Montesinos-Lopez OA, Martin-Vallejo J, Crossa J, et al. New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes. G3-Genes Genomes Genet 2019;9:1545-56. https://doi.org/10.1534/g3.119.300585
- Sandhu K, Patil SS, Pumphrey M, Carter A. Multitrait machineand deep-learning models for genomic selection using spectral information in a wheat breeding program. Plant Genome 2021;14:e20119. https://doi.org/https://doi.org/10.1002/tpg2.20119
- Perez-Rodriguez P, Gianola D, Gonzalez-Camacho JM, Crossa J, Manes Y, Dreisigacker S. Comparison between linear and non-parametric regression models for genomeenabled prediction in wheat. G3-Genes Genomes Genet 2012;2:1595-605. https://doi.org/10.1534/g3.112.003665
- Gonzalez-Camacho JM, Crossa J, Perez-Rodriguez P, Ornella L, Gianola D. Genome-enabled prediction using probabilistic neural network classifiers. BMC Genomics 2016;17:208. https://doi.org/10.1186/s12864-016-2553-1
- Ma W, Qiu Z, Song J, et al. A deep convolutional neural network approach for predicting phenotypes from genotypes. Planta 2018;248:1307-18. https://doi.org/10.1007/s00425-018-2976-9
- Montesinos-Lopez OA, Montesinos-Lopez JC, Singh P, et al. A multivariate poisson deep learning model for genomic prediction of count data. G3-Genes Genomes Genet 2020;10:4177-90. https://doi.org/10.1534/g3.120.401631
- Zingaretti LM, Gezan SA, Ferrao LFV, et al. Exploring deep learning for complex trait genomic prediction in polyploid outcrossing species. Front Plant Sci 2020;11:25. https://doi.org/10.3389/fpls.2020.00025
- Waldmann P, Pfeiffer C, Meszaros G. Sparse convolutional neural networks for genome-wide prediction. Front Genet 2020;11:25. https://doi.org/10.3389/fgene.2020.00025
- Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 2021;8:53. https://doi.org/10.1186/s40537-021-00444-8
- Pook T, Freudenthal J, Korte A, Simianer H. Using local convolutional neural networks for genomic prediction. Front Genet 2020;11:561497. https://doi.org/10.3389/fgene.2020.561497
- Choy YH, Mahboob A, Cho CI, et al. Genetic parameters of pre-adjusted body weight growth and ultrasound measures of body tissue development in three seedstock pig breed populations in Korea. Asian-Australas J Anim Sci 2015;28:1696-702. https://doi.org/10.5713/ajas.14.0971
- Alam M, Chang HK, Lee SS, Choi TJ. Genetic analysis of major production and reproduction traits of Korean Duroc, Landrace and Yorkshire pigs. Animals 2021;11:1321. https://doi.org/10.3390/ani11051321
- Gozalo-Marcilla M, Buntjer J, Johnsson M, et al. Genetic architecture and major genes for backfat thickness in pig lines of diverse genetic backgrounds. Genet Sel Evol 2021;53:76. https://doi.org/10.1186/s12711-021-00671-w
- Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype imputation using information from relatives. BMC Genomics 2014;15:478. https://doi.org/10.1186/1471-2164-15-478
- VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980
- Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PLoS One 2012;7:e45293. https://doi.org/10.1371/journal.pone.0045293
- Vitezica ZG, Legarra A, Toro MA, Varona L. Orthogonal estimates of variances for additive, dominance, and epistatic effects in populations. Genetics 2017;206:1297-307. https://doi.org/10.1534/genetics.116.199406
- Perez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 2014; 198:483-95. https://doi.org/10.1534/genetics.114.164442
- Montesinos-Lopez OA, Montesinos-Lopez A, Crossa J, et al. A singular value decomposition Bayesian multiple-trait and multiple-environment genomic model. Heredity 2019;122: 381-401. https://doi.org/10.1038/s41437-018-0109-7
- Gianola D. Priors in whole-genome regression: the bayesian alphabet returns. Genetics 2013;194:573-96. https://doi.org/10.1534/genetics.113.151753
- Chollet F, Allaire J, Falbel D, Tang Y, Van Der Bijl W, Studer M. R interface to keras. Keras Team c2017 [cited 2020, Apr 21]. Available from: https://github.com/rstudio/keras
- Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 2014. https://doi.org/10.48550/arXiv.1412.6980
- Yan Y. rBayesianOptimization: Bayesian optimization of hyperparameters. R package version; 2016. Available from: https://github.com/yanyachen/rBayesianOptimization
- Vitezica ZG, Reverter A, Herring W, Legarra A. Dominance and epistatic genetic variances for litter size in pigs using genomic models. Genet Sel Evol 2018;50:71. https://doi.org/10.1186/s12711-018-0437-3
- Jia Y, Jannink J. Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 2012;192:1513-22. https://doi.org/10.1534/genetics.112.144246
- Lancaster J, Lorenz R, Leech R, Cole JH. Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction. Front Aging Neurosci 2018;10;28. https://doi.org/10.3389/fnagi.2018.00028