Acknowledgement
We thank the animal owners and scientists who willingly shared their genetic information with the general public. Sample collection and genotyping of SO cattle were supported by the Indonesian Agency for Agricultural Research and Development through KP4S scheme.
References
- Hardjosubroto W. Alternative policies for the sustainable management of local beef cattle genetic resources within the national livestock breeding system. Wartazoa 2004;14:93-7.
- Barwegen M. Golden Horns: The History of Livestock Farming on Java, 1850-2000. Ann Arbor, MI, USA: ProQuest LLC; 2020.
- Astuti M. Potential and genetic resources diversity of Ongole Grade cattle. Wartazoa 2004;14:98-106.
- Diwyanto K. Utilization of local resources and technological innovation to support the development of beef cattle in Indonesia. Pengembangan Inovasi Pertanian 2008;1:173-88.
- Sumadi, Siliwolu. Research on the genetic quality of Ongole and Brahman cattle in East Sumba Regency, East Nusa Tenggara. In: Proceedings of National Beef Cattle Workshop. Yogyakarta: Indonesian Center for Animal Research and Development; 2004. pp. 31-41.
- Statistics of Sumba Timur. Sumba Timur in Figures 2023. Waingapu, Indonesia: BPS-Statistics of Sumba Timur; 2023.
- Lenstra JA, Groeneveld LF, Eding H, et al. Molecular tools and analytical approaches for the characterization of farm animal genetic diversity. Anim Genet 2012;43:483-502. https://doi.org/10.1111/j.1365-2052.2011.02309.x
- Agung PP, Anwar S, Wulandari AS, Sudiro A, Said S, Tappa B. The potency of Sumba Ongole (SO) cattle: A study of genetic characterization and carcass productivity. J Indones Trop Anim Agric 2015;40:71-8. https://doi.org/10.14710/jitaa.40.2.71-78
- Jakaria J, Musyaddad T, Rahayu S, Muladno M, Sumantri C. Diversity of D-loop mitochondrial DNA (mtDNA) sequence in Bali and Sumba Ongole cattle breeds. J Indones Trop Anim Agric 2019;44:335-45. https://doi.org/10.14710/jitaa.44.4.335-345
- Vignal A, Milan D, SanCristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 2002;34:275. https://doi.org/10.1186/1297-9686-34-3-275
- Wilkinson S, Wiener P. Population genomics of animal domestication and breed development. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham, Switzerland: Springer Nature; 2019. pp. 709-53. https://doi.org/10.1007/13836_2017_8
- Sudrajad P, Subiharta S, Adinata Y, et al. An insight into the evolutionary history of Indonesian cattle assessed by whole genome data analysis. PLoS ONE 2020;15:e0241038. https://doi.org/10.1371/journal.pone.0241038
- Adinata Y, Noor RR, Priyanto R, Cyrilla L, Sudrajad P. Comparison of growth curve models for Ongole Grade cattle. Trop Anim Health Prod 2022;54:252. https://doi.org/10.1007/s11250-022-03254-z
- Dixit SP, Singh S, Ganguly I, et al. Genome-wide Runs of Homozygosity revealed selection signatures in Bos indicus. Front Genet 2020;11:92. https://doi.org/10.3389/fgene.2020.00092
- Decker JE, McKay SD, Rolf MM, et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet 2014;10:e1004254. https://doi.org/10.1371/journal.pgen.1004254
- Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 2015;4:s13742-015-0047-8. https://doi.org/10.1186/s13742-015-0047-8
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2021 [cited 2023 Mar 10]. Available from: https://www.R-project.org
- Yang J, Lee SH, Goddard ME, Visscher PM. Genome-wide complex trait analysis (GCTA): methods, data analyses, and interpretations. In: Gondro C, van der Werf J, Hayes B, editors. Genome-wide association studies and genomic prediction. London, UK: Springer Science+Business Media; 2013. pp. 215-36.
- Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 2014;197:573-89. https://doi.org/10.1534/genetics.114.164350
- Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 2012;8:e1002967. https://doi.org/10.1038/npre.2012.6956.1
- Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history. Nature 2009;461:489-94. https://doi.org/10.1038/nature08365
- Sved JA, Hill WG. One hundred years of linkage disequilibrium. Genet 2018;209:629-36. https://doi.org/10.1534/genetics.118.300642
- Barbato M, Orozco-terWengel P, Tapio M, Bruford MW. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front Genet 2015;6:109. https://doi.org/10.3389/fgene.2015.00109
- Santiago E, Novo I, Pardinas AF, Saura M, Wang J, Caballero A. Recent demographic history inferred by high-resolution analysis of linkage disequilibrium. Mol Biol Evol 2020;37:3642-53. https://doi.org/10.1093/molbev/msaa169
- Utsunomiya YT, Milanesi M, Fortes MRS, et al. Genomic clues of the evolutionary history of Bos indicus cattle. Anim Genet 2019;50:557-68. https://doi.org/10.1111/age.12836
- Hegde NG. Livestock development for sustainable livelihood of small farmers. Asian J Res Anim Vet Sci 2019;3:1-17. https://doi.org/10.9734/ajravs/2019/v2i152
- Movahedin MR, Amirinia C, Noshary A, Mirhadi SA. Detection of genetic variation in sample of Iranian proofed Holstein cattle by using microsatellite marker. Afr J Biotechnol 2010;9:9042-5.
- Watuwaya BK, Syamsu JA, Budiman, Useng D. Analysis of the potential development of beef cattle in East Sumba Regency, East Nusa Tenggara Province, Indonesia. IOP Conf Ser: Earth Environ Sci 2020;492:012153. https://doi.org/10.1088/1755-1315/492/1/012153
- Adepoju D. Estimating the effective population size of Swedish native cattle [thesis]. Uppsala, Sweden: Swedish University of Agricultural Sciences; 2022.