DOI QR코드

DOI QR Code

Genetic factors influencing milk and fat yields in tropically adapted dairy cattle: insights from quantitative trait loci analysis and gene associations

  • Thawee Laodim (Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus) ;
  • Skorn Koonawootrittriron (Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University) ;
  • Mauricio A. Elzo (Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University) ;
  • Thanathip Suwanasopee (Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University) ;
  • Danai Jattawa (Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University) ;
  • Mattaneeya Sarakul (Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University)
  • 투고 : 2023.07.04
  • 심사 : 2023.10.01
  • 발행 : 2024.04.01

초록

Objective: The objective of this study was to identify genes associated with 305-day milk yield (MY) and fat yield (FY) that also influence the adaptability of the Thai multibreed dairy cattle population to tropical conditions. Methods: A total of 75,776 imputed and actual single nucleotide polymorphisms (SNPs) from 2,661 animals were used to identify genomic regions associated with MY and FY using the single-step genomic best linear unbiased predictions. Fixed effects included herd-year-season, breed regression, heterosis regression and calving age regression effects. Random effects were animal additive genetic and residual. Individual SNPs with a p-value smaller than 0.05 were selected for gene mapping, function analysis, and quantitative trait loci (QTL) annotation analysis. Results: A substantial number of QTLs associated with MY (9,334) and FY (8,977) were identified by integrating SNP genotypes and QTL annotations. Notably, we discovered 17 annotated QTLs within the health and exterior QTL classes, corresponding to nine unique genes. Among these genes, Rho GTPase activating protein 15 (ARHGAP15) and catenin alpha 2 (CTNNA2) have previously been linked to physiological traits associated with tropical adaptation in various cattle breeds. Interestingly, these two genes also showed signs of positive selection, indicating their potential role in conferring tolerance to trypanosomiasis, a prevalent tropical disease. Conclusion: Our findings provide valuable insights into the genetic basis of MY and FY in the Thai multibreed dairy cattle population, shedding light on the underlying mechanisms of tropical adaptation. The identified genes represent promising targets for future breeding strategies aimed at improving milk and fat production while ensuring resilience to tropical challenges. This study significantly contributes to our understanding of the genetic factors influencing milk production and adaptability in dairy cattle, facilitating the development of sustainable genetic selection strategies and breeding programs in tropical environments.

키워드

과제정보

The authors gratefully acknowledge the valuable data provided by the Dairy Farming Promotion Organization (DPO) and the unwavering support from the Tropical Animal Genetic Special Research Unit (TAGU) at Kasetsart University and the University of Florida, Gainesville, Florida, USA. Their contributions have been crucial to the successful completion of this research, and their collaborative efforts are highly appreciated.

참고문헌

  1. Gaughan JB, Sejian V, Mader TL, Dunshea FR. Adaptation strategies: ruminants. Anim Front 2019;9:47-53. https://doi.org/10.1093/af/vfy029
  2. Porto-Neto LR, Reverter A, Prayaga KC, et al. The genetic architecture of climatic adaptation of tropical cattle. PLoS One 2014;9:e113284. https://doi.org/10.1371/journal.pone.0113284
  3. Otto PI, Guimaraes SEF, Verardo LL, et al. Genome-wide association studies for heat stress response in Bos taurus × Bos indicus crossbred cattle. J Dairy Sci 2019;102:8148-58. https://doi.org/10.3168/jds.2018-15305
  4. Koonawootrittriron S, Elzo MA, Thongprapi T. Genetic trends in a Holstein × other breeds multibreed dairy population in Central Thailand. Livest Sci 2009;122:186-92. https://doi.org/10.1016/j.livsci.2008.08.013
  5. Ritsawai P, Koonawootrittriron S, Jattawa D, Suwanasopee T, Elzo MA. Fraction of cattle breed and their influence on milk production of Thai dairy cattle. In: Proceeding of 52nd Kasetsart conference; 2014 Feb 4-7; Kasetsart University, Bangkok, Thailand.
  6. Yodklaew P, Koonawootrittriron S, Elzo MA, et al. Genome-wide association study for lactation characteristics, milk yield and age at first calving in a Thai multibreed dairy cattle population. Agric Nat Resour 2017;51:223-30. https://doi.org/10.1016/j.anres.2017.04.002
  7. Laodim T, Elzo MA, Koonawootrittriron S, Suwanasopee T, Jattawa D. Pathway enrichment and protein interaction network analysis for milk yield, fat yield and age at first calving in a Thai multibreed dairy population. Asian-Australas J Anim Sci 2019;32:508-18. https://doi.org/10.5713/ajas.18.0382
  8. Koonawootrittriron S, Elzo MA, Tumwasorn S. Multibreed genetic parameters and predicted genetic values for first lactation 305-d milk yield, fat yield, and fat percentage in a Bos taurus × Bos indicus multibreed dairy population in Thailand. Thai J Agric Sci 2002;35:339-60.
  9. Sargent FD, Lytton VH, Wall JROG. Test interval method of calculating dairy herd improvement association records. J Dairy Sci 1968;51:170-9. https://doi.org/10.3168/jds.S0022-0302(68)86943-7
  10. Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype imputation using information from relatives. BMC Genomics 2014;15:478. https://doi.org/10.1186/1471-2164-15-478
  11. Jattawa D, Elzo MA, Koonawootrittriron S, Suwanasopee T. Imputation accuracy from low to moderate density single nucleotide polymorphism chips in a thai multibreed dairy cattle population. Asian-Australas J Anim Sci 2016;29:464-70. https://doi.org/10.5713/ajas.15.0291
  12. Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 2010;93:743-52. https://doi.org/10.3168/jds.2009-2730
  13. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980
  14. Tsuruta S. Average information REML with several options including EM-REML and heterogeneous residual variances [internet]. c2016 [cited 2023 Jan 17]. Available form: http://nce.ads.uga.edu/wiki/doku.php?id=application_programs
  15. Misztal I, Tsuruta S, Strabal T, et al. BLUPF90 and related programs (GSF90). In: Proceeding of 7th World Congress on Genetics Applied to Livestock Production, 2002. August 19-23, 2002. Montpellier, France.
  16. Wang H, Misztal I, Aguilar I, et al. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front Genet 2014;5:134. https://doi.org/10.3389/fgene.2014.00134
  17. Yin L, Zhang H, Tang Z, et al. rMVP: A Memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom Proteom Bioinform 2021;19:619-28. https://doi.org/10.1016/j.gpb.2020.10.007
  18. McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. Genome Biol 2016;17:122. https://doi.org/10.1186/s13059-016-0974-4
  19. Fonseca LFS, Silva DBS, Gimenez DFJ, et al. Gene expression profiling and identification of hub genes in Nellore cattle with different marbling score levels. Genomics 2020;112;873-9. https://doi.org/10.1016/j.ygeno.2019.06.001
  20. Buaban S, Lengnudum K, Boonkum W, Phakdeedindan P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J Dairy Sci 2022;105:468-94. https://doi.org/10.3168/jds.2020-19826
  21. Lee S, Dang CG, Choy YH, et al. Comparison of genome-wide association and genomic prediction methods for milk production traits in Korean Holstein cattle. Asian-Australas J Anim Sci 2019;32:913-21. https://doi.org/10.5713/ajas.18.0847
  22. Sigdel A, Abdollahi-Arpanahi R, Aguilar I, Penagaricano F. Whole genome mapping reveals novel genes and pathways involved in milk production under heat stress in US Holstein cows. Front Genet 2019;10:928. https://doi.org/10.3389/fgene.2019.00928
  23. Sahana G, Cai Z, Sanchez MP, Bouwman AC, Boichard D. Invited review: Good practices in genome-wide association studies to identify candidate sequence variants in dairy cattle. J Dairy Sci 2023;106:5218-41. https://doi.org/10.3168/jds.2022-22694
  24. Kurz JP, Yang Z, Weiss RB, et al. A genome-wide association study for mastitis resistance in phenotypically well-characterized Holstein dairy cattle using a selective genotyping approach. Immunogenetics 2019;71:35-47. https://doi.org/10.1007/s00251-018-1088-9
  25. Johnston D, Earley B, McCabe MS, et al. Elucidation of the host bronchial lymph node miRNA transcriptome response to bovine respiratory syncytial virus. Front Genet 2021;12:633125. https://doi.org/10.3389/fgene.2021.633125
  26. Chen X, Cheng Z, Zhang S, Werling D, Wathes D. Combining genome wide association studies and differential gene expression data analyses identifies candidate genes affecting mastitis caused by two different pathogens in the dairy cow. Open J Anim Sci 2015;5:358-93. https://doi.org/10.4236/ojas.2015.54040
  27. Gondaira S, Nishi K, Fujiki J, et al. Innate immune response in bovine neutrophils stimulated with Mycoplasma bovis. Vet Res 2021;52:58. https://doi.org/10.1186/s13567-021-00920-2
  28. Cuesta LM, Liron JP, Farias MVN, Dolcini GL, Ceriani MC. Effect of bovine leukemia virus (BLV) infection on bovine mammary epithelial cells RNA-seq transcriptome profile. PLOS One 2020;15:e0234939. https://doi.org/10.1371/journal.pone.0234939
  29. Zhang S, Zhang L, Jiang Z, Guo Y, Zhao H, Sun J. Protein tyrosine phosphatase receptor type E (PTPRE) regulates the activation of wild-type KIT and KIT mutants differently. Biochem Biophys Rep 2021;26:100974. https://doi.org/10.1016/j.bbrep.2021.100974
  30. Fontanesi L, Tazzoli M, Russo V, Beever J. Genetic heterogeneity at the bovine KIT gene in cattle breeds carrying different putative alleles at the spotting locus. Anim Genet 2009;41:295-303. https://doi.org/10.1111/j.1365-2052.2009.02007.x
  31. Fontanesi L, Scotti E, Russo V. Analysis of SNPs in the KIT gene of cattle with different coat colour patterns and perspectives to use these markers for breed traceability and authentication of beef and dairy products. Ital J Anim Sci 2010;9:e42.
  32. Salleh MS, Mazzoni G, Nielsen MO, Lovendahl P, Kadarmideen HN. Identification of expression QTLs targeting candidate genes for residual feed intake in dairy cattle using systems genomics. J Genet Genome Res 2018;5:035. https://doi.org/10.23937/2378-3648/1410035
  33. Ghahramani N, Shodja J, Rafat SA, Panahi B, Hasanpur K. Integrative systems biology analysis elucidates mastitis disease underlying functional modules in dairy cattle. Front Genet 2021;12:712306. https://doi.org/10.3389/fgene.2021.712306
  34. Wang M, Bissonnette N, Laterriere M, et al. Methylome and transcriptome data integration reveals potential roles of DNA methylation and candidate biomarkers of cow Streptococcus uberis subclinical mastitis. J Anim Sci Biotechnol 2022;13:36. https://doi.org/10.1186/s40104-022-00779-z
  35. Darang E, Pezeshkian Z, Mirhoseini SZ, Ghovvati S. Identification of key genes and potential pathways associated with mastitis induced by E. coli. Biochem Genet 2023;61:202-20. https://doi.org/10.1007/s10528-022-10254-z
  36. Sigdel A, Bisinotto RF, Penagaricano F. Genes and pathways associated with pregnancy loss in dairy cattle. Sci Rep 2021;11:13329. https://doi.org/10.1038/s41598-021-92525-0
  37. Kotlarz K, Mielczarek M, Biecek P, et al. An explainable deep learning classifier of bovine mastitis based on whole genome sequence data - circumventing the p>>>n problem. bioRxiv 2023.03.23.533903. https://doi.org/10.1101/2023.03.23.533903
  38. Garner JB, Chamberlain AJ, Vander Jagt C, et al. Gene expression of the heat stress response in bovine peripheral white blood cells and milk somatic cells in vivo. Sci Rep 2020;10:19181. https://doi.org/10.1038/s41598-020-75438-2
  39. Zeng H, Xia H, Wang X, et al. Comprehensive profiling of ceRNA (circRNA-miRNA-mRNA) networks in hypothalamic-pituitary-mammary gland axis of dairy cows under heat stress. Int J Mol Sci 2023;24:888. https://doi.org/10.3390/ijms24010888
  40. Pacheco HA, Rossoni A, Cecchinato A, Penagaricano F. Deciphering the genetic basis of male fertility in Italian Brown Swiss dairy cattle. Sci Rep 2022;12:10575. https://doi.org/10.1038/s41598-022-14889-1
  41. Cheruiyot EK, Haile-Mariam M, Cocks BG, et al. New loci and neuronal pathways for resilience to heat stress in cattle. Sci Rep 2021;11:16619. https://doi.org/10.1038/s41598-021-95816-8
  42. Zamorano-Algandar R, Medrano JF, Thomas MG, et al. Genetic markers associated with milk production and thermotolerance in Holstein dairy cows managed in a heat-stressed environment. Biology 2023;12:679. https://doi.org/10.3390/biology12050679
  43. Mallonee PG, Beede DK, Collier RJ, Wilcox CJ. Production and physiological responses of dairy cows to varying dietary potassium during heat stress. J Dairy Sci 1985;68:1479-87. https://doi.org/10.3168/jds.S0022-0302(85)80986-3
  44. Jayawardana JMDR, Lopez-Villalobos N, McNaughton LR, Hickson RE. Genomic regions associated with milk composition and fertility traits in spring-calved dairy cows in New Zealand. Genes 2023;14:860. https://doi.org/10.3390/genes14040860
  45. Liu L, Zhou J, Chen CJ, et al. Ten genetic loci identified for milk yield, fat, and protein in Holstein cattle. bioRxiv 2020. 06. 17. 158386. https://doi.org/10.1101/2020.06.17.158386
  46. Chopra A, Ali SA, Bathl, S, et al. High-resolution mass spectrometer-based ultra-deep profile of milk whey proteome in Indian Zebu (Sahiwal) cattle. Front Nutr 2020;7:150. https://doi.org/10.3389/fnut.2020.00150
  47. Jakimowicz M, Szyda J, Zarnecki A, et al. Genome-wide genomic and functional association study for workability and calving traits in Holstein cattle. Animal 2022;12:1127. https://doi.org/10.3390/ani12091127
  48. Kim SJ, Ka S, Ha JW, et al. Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N'Dama. BMC Genomics 2017;18:371. https://doi.org/10.1186/s12864-017-3742-2
  49. Noyes H, Brass A, Obara I, et al. Genetic and expression analysis of cattle identifies candidate genes in pathways responding to Trypanosoma congolense infection. Proc Natl Acad Sci 2011;108:9304-9. https://doi.org/10.1073/pnas.1013486108
  50. Flori L, Moazami-Goudarzi K, Alary V, et al. A genomic map of climate adaptation in Mediterranean cattle breeds. Mol Ecol 2019;28:1009-29. https://doi.org/10.1111/mec.15004
  51. Maiorano AM, Lourenco DL, Tsuruta S, et al. Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information. PLoS ONE 2018;13:e0200694. https://doi.org/10.1371/journal.pone.0200694
  52. Gao Y, Gautier M, Ding X, et al. Species composition and environmental adaptation of indigenous Chinese cattle. Sci Rep 2017;7:16196. https://doi.org/10.1038/s41598-017-16438-7
  53. Edea Z, Dessie T, Uzzaman MR, et al. Genome-wide scan reveals divergent selection among taurine and zebu cattle populations from different regions. Anim Genet 2018;49:550-63. https://doi.org/10.1111/age.12724
  54. Jia P, Cai C, Qu K, et al. Four novel SNPs of MYO1A gene associated with heat-tolerance in Chinese cattle. Animals 2019;9:964. https://doi.org/10.3390/ani9110964
  55. Cao Y, Jia P, Wu Z, et al. A novel SNP of MYO1A gene associated with heat-tolerance in Chinese cattle. Anim Biotechnol 2022;33:810-5. https://doi.org/10.1080/10495398.2020.1837147
  56. Dikmen S, Cole JB, Null DJ, Hansen PJ. Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in Holstein cattle. PLoS ONE 2013;8:e69202. https://doi.org/10.1371/journal.pone.0069202
  57. Luo H, Hu L, Brito LF, et al. Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. J Anim Sci Biotechnol 2022;13:108. https://doi.org/10.1186/s40104-022-00748-6
  58. Lu Z, Xie Y, Huang H, et al. Hair follicle stem cells regulate retinoid metabolism to maintain the self-renewal niche for melanocyte stem cells. eLife 2020;9:e52712. https://doi.org/10.7554/eLife.52712
  59. Senczuk G, Landi V, Mastrangelo S, Persichilli C, Pilla F, Ciani E. Seven shades of grey: a follow-up study on the molecular basis of coat colour in indicine grey cattle using genome-wide SNP data. Genes 2022;13:1601. https://doi.org/10.3390/genes13091601
  60. Akauliya M, Gautam A, Maharjan S, Park BK, Kim J, Kwon HJ. CD83 expression regulates antibody production in response to influenza a virus infection. Virol J 2020;17:194. https://doi.org/10.1186/s12985-020-01465-0
  61. Otto PI, Guimaraes SEF, Varardo LL, et al. Genome-wide association studies for tick resistance in Bos taurus × Bos indicus crossbred cattle: A deeper look into this intricate mechanism. J Dairy Sci 2018;101:11020-32. https://doi.org/10.3168/jds.2017-14223