Genome-wide association study to reveal new candidate genes using single-step approaches for productive traits of Yorkshire pig in Korea

  • Jun Park (Department of Animal Biotechnology, Jeonbuk National University)
  • Received : 2023.06.11
  • Accepted : 2023.11.08
  • Published : 2024.03.01


Objective: The objective is to identify genomic regions and candidate genes associated with age to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye muscle area (EMA) in Yorkshire pig. Methods: This study used a total of 104,380 records and 11,854 single nucleotide polymorphism (SNP) data obtained from Illumina porcine 60K chip. The estimated genomic breeding values (GEBVs) and SNP effects were estimated by single-step genomic best linear unbiased prediction (ssGBLUP). Results: The heritabilities of AGE, ADG, BF, and EMA were 0.50, 0.49, 0.49, and 0.23, respectively. We identified significant SNP markers surpassing the Bonferroni correction threshold (1.68×10-6), with a total of 9 markers associated with both AGE and ADG, and 4 markers associated with BF and EMA. Genome-wide association study (GWAS) analyses revealed notable chromosomal regions linked to AGE and ADG on Sus scrofa chromosome (SSC) 1, 6, 8, and 16; BF on SSC 2, 5, and 8; and EMA on SSC 1. Additionally, we observed strong linkage disequilibrium on SSC 1. Finally, we performed enrichment analyses using gene ontology and Kyoto encyclopedia of genes and genomes (KEGG), which revealed significant enrichments in eight biological processes, one cellular component, one molecular function, and one KEGG pathway. Conclusion: The identified SNP markers for productive traits are expected to provide valuable information for genetic improvement as an understanding of their expression.



  1. Hoque MA, Suzuki K, Kadowaki H, Shibata T, Oikawa T. Genetic parameters for feed efficiency traits and their relationships with growth and carcass traits in Duroc pigs. J Anim Breed Genet 2007;124:108-16.
  2. Fontanesi L, Schiavo G, Galimberti G, Calo DG, Russo V. A genomewide association study for average daily gain in Italian Large White pigs. J Anim Sci 2014;92:1385-94.
  3. Ding R, Yang M, Wang X, et al. Genetic architecture of feeding behavior and feed efficiency in a duroc pig population. Front Genet 2018;9:220.
  4. Vargovic L, Bunter KL, Hermesch S. Economic benefit of additional recording for welfare traits in maternal breeding objectives for pigs. In: Proceedings of the 24th Association for the Advancement of Animal Breeding and Genetics; 2021. pp. 406-9.
  5. Ruan D, Zhuang Z, Ding R, et al. Weighted single-step GWAS identified candidate genes associated with growth traits in a Duroc pig population. Genes (Basel) 2021;12:117.
  6. Marques DBD, Bastiaansen JWM, Broekhuijse MLWJ, et al. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genet Sel Evol 2018;50:40.
  7. Luo H, Hu L, Brito LF, et al. Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. J Anim Sci Biotechnol 2022;13:108.
  8. Brunes LC, Baldi F, Lopes FB, et al. Weighted single-step genome-wide association study and pathway analyses for feed efficiency traits in Nellore cattle. J Anim Breed Genet 2021;138:23-44.
  9. Delaneau O, Zagury JF, Robinson MR, Marchini JL, Dermitzakis ET. Accurate, scalable and integrative haplotype estimation. Nat Commun 2019;10:5436.
  10. Rubinacci S, Delaneau O, Marchini J. Genotype imputation using the Positional Burrows Wheeler Transform. PLoS Genet 2020;16:e1009049.
  11. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75.
  12. Aguilar I, Misztal I, Legarra A, Tsuruta S. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. J Anim Breed Genet 2011;128:422-8.
  13. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23.
  14. Christensen OF, Madsen P, Nielsen B, Ostersen T, Su G. Singlestep methods for genomic evaluation in pigs. Animal 2012;6:1565-71.
  15. Misztal I, Tsuruta S, Lourenco D, Aguilar I, Legarra A, Vitezica Z. Manual for BLUPF90 family of programs. Athens, GA, USA: University of Georgia; 2014.
  16. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; c2013 [cited 2023 Jun 11]. Available from:
  17. Yin L, Zhang H, Tang Z, et al. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics Proteomics Bioinformatics 2021;19:619-28.
  18. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263-5.
  19. Tang Z, Xu J, Yin L, et al. Genome-wide association study reveals candidate genes for growth relevant traits in pigs. Front Genet 2019;10:302.
  20. Zhou S, Ding R, Meng F, et al. A meta-analysis of genome-wide association studies for average daily gain and lean meat percentage in two Duroc pig populations. BMC Genomics 2021;22:12.
  21. Zeng H, Zhong Z, Xu Z, et al. Meta-analysis of genome-wide association studies uncovers shared candidate genes across breeds for pig fatness trait. BMC Genomics 2022;23:786.
  22. Li Y, Pu L, Shi L, et al. Revealing new candidate genes for teat number relevant traits in duroc pigs using genome-wide association studies. Animals (Basel) 2021;11:806.
  23. Kim KS, Larsen N, Short T, Plastow G, Rothschild MF. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm Genome 2000;11:131-5.
  24. Hernandez-Sanchez J, Visscher P, Plastow G, Haley C. Candidate gene analysis for quantitative traits using the transmission disequilibrium test: the example of the melanocortin 4-receptor in pigs. Genetics 2003;164:637-44.
  25. Li W, Wang Z, Luo S, Wu J, Zhou L, Liu J. Genome-wide association analysis and genetic parameters for feed efficiency and related traits in Yorkshire and Duroc pigs. Animals (Basel) 2022;12:1902.
  26. Davoli R, Braglia S, Valastro V, et al. Analysis of MC4R polymorphism in Italian Large White and Italian Duroc pigs: association with carcass traits. Meat Sci 2012;90:887-92.
  27. Silva EF, Lopes MS, Lopes PS, Gasparino E. A genome-wide association study for feed efficiency-related traits in a cross-bred pig population. Animal 2019;13:2447-56.
  28. Thuy HT, Nhan GTT, Mai PTP, et al. Associations of some candidate gene polymorphisms with growth traits in Duroc pigs. Livest Res Rural Dev 2019;31:158.
  29. Hofsteen P, Robitaille AM, Strash N, et al. ALPK2 promotes cardiogenesis in zebrafish and human pluripotent stem cells. iScience 2018;2:88-100.
  30. Li XJ, Zhou J, Liu LQ, Qian K, Wang CL. Identification of genes in longissimus dorsi muscle differentially expressed between Wannanhua and Yorkshire pigs using RNA-sequencing. Anim Genet 2016;47:324-33.
  31. Li D, Huang M, Zhuang Z, et al. Genomic analyses revealed the genetic difference and potential selection genes of growth traits in two duroc lines. Front Vet Sci 2021;8:725367.
  32. Falker-Gieske C, Blaj I, Preuss S, Bennewitz J, Thaller G, Tetens J. GWAS for meat and carcass traits using imputed sequence level genotypes in pooled F2-designs in pigs. G3 (Bethesda) 2019;9:2823-34.
  33. Shin SC, Chung ER. SNP detection of carboxypeptidase E gene and its association with meat quality and carcass traits in Korean cattle. Asian-Australas J Anim Sci 2007;20:32833.
  34. Oliveira HC, Derks MF, Lopes MS, et al. Fine mapping of a major backfat QTL reveals a causal regulatory variant affecting the CCND2 gene. Front Genet 2022;13:871516.
  35. Kushner JA, Ciemerych MA, Sicinska E, et al. Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol Cell Biol 2005;25:3752-62.
  36. van Son M, Derks M, Lopes M, Sevillano C, Harlizius B, Grindflek E. Genomic regions associated with backfat thickness show pleiotropic effect on osteochondrosis in pig. In: Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP): Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges. Wageningen, The Netherlands: Wageningen Academic Publishers; 2022. pp. 3225-8.
  37. Lee YS, Shin D. Genome-wide association studies associated with Backfat thickness in landrace and Yorkshire pigs. Genomics Inform 2018;16:59-64.
  38. Hong JK, Lee JB, Ramayo-Caldas Y, et al. Single-step genome-wide association study for social genetic effects and direct genetic effects on growth in Landrace pigs. Sci Rep 2020;10:14958.
  39. Tang Z, Fu Y, Xu J, et al. Discovery of selection-driven genetic differences of Duroc, Landrace, and Yorkshire pig breeds by EigenGWAS and Fst analyses. Anim Genet 2020;51:531-40.
  40. Zhao Y, Li N, Xiao L, et al. FSHB subunit gene is associated with major gene controlling litter size in commercial pig breeds. Sci China C Life Sci 1998;41:664-8.
  41. Liu H, Hou L, Zhou W, et al. Genome-wide association study and fst analysis reveal four quantitative trait loci and six candidate genes for meat color in pigs. Front Genet 2022;13:768710.
  42. Moritoh Y, Oka M, Yasuhara Y, et al. Inositol hexakisphosphate kinase 3 regulates metabolism and lifespan in mice. Sci Rep 2016;6:32072.
  43. Kaur A, Sodhi SS, Sethi R, Mukhopadhyay C. An animal model to visualize differential expression of genes related to metabolic process and immune reaction between Large White Yorkshire (LWY) and Indigenous Pigs of Punjab. 2021;6:963-8.
  44. Jian F, Che X, Zhang J, et al. The long-noncoding RNA SOCS2-AS1 suppresses endometrial cancer progression by regulating AURKA degradation. Cell Death Dis 2021;12:351.
  45. Li S, Han S, Jin K, et al. SOCS2 Suppresses Inflammation and Apoptosis during NASH progression through limiting NF-κB activation in macrophages. Int J Biol Sci 2021;17:4165-75.