DOI QR코드

DOI QR Code

코코넛 껍질-전도성 고분자 복합소재로부터 탄소 소재의 제조 및 전기화학적 특성 분석

Preparation of Hybrid Carbon from Conducting Polymer-Coconut Shell Composites and Their Electrochemical Properties

  • 박정은 (동덕여자대학교 응용화학과) ;
  • 신수빈 (동덕여자대학교 응용화학과) ;
  • 윤예원 (동덕여자대학교 화장품학전공) ;
  • 박지원 (동덕여자대학교 응용화학과) ;
  • 배준원 (동덕여자대학교 응용화학과)
  • Jeongeun Park (Department of Applied Chemistry, Dongduk Women's University) ;
  • Subin Shin (Department of Applied Chemistry, Dongduk Women's University) ;
  • Yewon Yoon (Department of Cosmetic Science, Dongduk Women's University) ;
  • Jiwon Park (Department of Applied Chemistry, Dongduk Women's University) ;
  • Joonwon Bae (Department of Applied Chemistry, Dongduk Women's University)
  • 투고 : 2023.12.16
  • 심사 : 2024.01.15
  • 발행 : 2024.02.10

초록

열대성 과일로 널리 재배되고 있는 코코넛(coconut)의 독특한 껍질(shell)은 과육 섭취 후 얻어지는 부산물로 활용 가치가 클 것으로 기대된다. 이 코코넛 껍질을 전도성 고분자와 혼합하여 복합소재를 간단한 방식으로 제조하고 섭씨 600도 정도의 상대적 저온에서 탄화하여 수득되는 소재의 전기화학적 특성 및 활용 가능성을 고찰하였다. 먼저, 외형적 요소를 주사전자현미경(scanning electron microscope, SEM)으로 관찰하였다. 탄소의 미세구조를 라만(Raman) 분광 분석을 통하여 추론하였다. 전기전도 가능성을 간단한 옴의 관계(Ohmic relation)를 통하여 확인하였다. 나아가, 탄화된 재료가 리튬 이차 전지의 음극(anode) 소재로 활용될 수 있는지 여부를 반쪽 전지(half-cell) 충방전(charge/discharge) 테스트를 통해 살펴보았으며, 최대 충전 용량은 약 750 mAh로 높게 나타났으나, 충전이 진행됨에 따라 빠른 감소를 보였다. 본 연구는 향후 목질계 폐기물의 활용에 대한 중요한 정보를 제공할 것이다.

The coconut shell, a by-product of popular tropical fruit, is a promising material due to its interesting properties. The preparation of the composite consisted of conducting polymer and coconut shell using a simple wet method, and subsequent carbonization produced a carbonized material under a controlled carbonization cycle. In addition, its electrochemical performance as an anode in lithium-ion batteries was also investigated. The appearance of the obtained materials was observed with a scanning electron microscope. The internal structure of the carbon derived from the coconut shell under a controlled heating profile was analyzed using a Raman spectroscope. A simple electrical measurement based on the ohmic relationship showed that the carbonized product has a significant electrical conductivity. The application of the carbonized product as anode in a lithium-ion battery was tested using half-cell charge/discharge experiments. This article provides important information for future research regarding the recycling of fruit shells and food waste.

키워드

과제정보

이 연구는 동덕여자대학교 지원으로 수행되었습니다. (2023년)

참고문헌

  1. S. Packialakshmi, B. Anuradha, K. Nagamani, D. J. Sarala, and S. Sujatha, Treatment of industrial wastewater using coconut shell based activated carbon, Mater. Today, 81, 1167-1171 (2023).
  2. J. O. Ighalo, J. Conradie, C. R. Ohoro, J. F. Amaku, K. O. Oyedotun, N. W. Maxakato, K. G. Akpomie, E. S. Okeke, C. Olisah, A. Malloum, and K. A. Adegoke, Biochar from coconut residues: An overview of production, properties, and applications, Ind. Crops Products, 204, 117300 (2023).
  3. K. Promdeea, J. Chanvidhwatanakita, S. Satitkunec, C. Boonmeec, T. Kawichaid, S. Jarernpraserte, and T. Vitidsant, Characterization of carbon materials and differences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln, Renew. Sust. Energ. Rev., 75, 1175-1186 (2017). https://doi.org/10.1016/j.rser.2016.11.099
  4. T. Huang, D. Peng, Z. Chen, X. Xia, Y, Chen, and H. Liu, Microstructures and electrochemical properties of coconut shell-based hard carbons as anode materials for potassium ion batteries, New Carbon Mater., 37, 1125-1134 (2022). https://doi.org/10.1016/S1872-5805(21)60069-0
  5. D. Hou, Z. Guo, Y. Wang, X. Hou, S. Yi, Z. Zhang, S. Hao, and D. Chen, Microwave-assisted reconstruction of spent graphite and its enhanced energy-storage performance as LIB anodes, Surf. Interfaces, 24, 101098 (2021).
  6. M. Arnaiz, M. Canal-Rodriguez, D. Carriazo, A. Villaverde, and J. Ajuria, Enabling versatile, custom-made lithium-ion capacitor prototypes: Benefits and drawbacks of using hard carbon instead of graphite, Electrochim. Acta, 437, 141456 (2023).
  7. D. Alvira, D. Antoran, and J. J. Manya, Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research, Chem. Eng. J., 447, 137468 (2022).
  8. S. Jayaraman, A. Jain, M. Ulaganathan, E. Edison, M. P. Srinivasan, R. Balasubramanian, V. Aravindan, and S. Madhavi, Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon, Chem. Eng. J., 316, 506-513 (2017). https://doi.org/10.1016/j.cej.2017.01.108
  9. Y. Huang, Y. Wang, P. Bai, and Y. Xu, Storage mechanism of alkali metal ions in the hard carbon anode: An electrochemical viewpoint, ACS Appl. Mater. Interfaces, 13, 38441-38449 (2021). https://doi.org/10.1021/acsami.1c12150
  10. S. G. Jeong, S. Ha, and Y. -S. Lee, Manufacturing and application of activated carbon and carbon molecular sieves in gas adsorption and separation processes, Appl. Chem. Eng., 33, 488-495 (2022).
  11. K. Song, J. -H. Lim, C. -G. Kim, C. -S. Park, and Y. -H. Kim, Enhancement of ammonia adsorption performance by impregnation of metal chlorides on surface-modified activated carbon, Appl. Chem. Eng., 32, 671-678 (2021).
  12. J. J. Yoo, N. Ko, S. H. Oh, J. Oh, M. Kim, J. Lee, T. Earmme, and J. Bae, Electrochemical properties and adsorption performance of carbon materials derived from coffee grounds, Appl. Chem. Eng., 34, 529-533 (2023).
  13. O. -N. Hur, S. Park, S. Park, B. -H. Kang, C. -S. Lee, J. -Y. Hong, S. -H. Park, and J. Bae, A study on fabrication of polypyrrole@lignin composite and electrical sensing and metal ion adsorption capabilities, Mater. Chem. Phys., 285, 126166 (2022).
  14. V. K. Thakur, M. K. Thakur, P. Raghavan, and M. R. Kessler, Progress in green polymer composites from lignin for multifunctional applications: A review, ACS Sustain. Chem. Eng., 2, 1072-1092 (2014). https://doi.org/10.1021/sc500087z
  15. J. Y. Jeong, D. J. Lee, J. Heo, D. -H. Lim, Y. -G. Seo, J. -H. Ahn, and C. -H. Choi, Development of biomass-derived anode material for lithium-ion battery, Clean Technol., 26, 131-136 (2020).
  16. R. Nandi, M. K. Jha, S. K. Guchhait, D. Sutradhar, and S. Yadav, Impact of KOH activation on rice husk derived porous activated carbon for carbon capture at flue gas alike temperatures with high CO2/N2 selectivity, ACS Omega, 5, 4802-4812 (2023).
  17. K. S. Kim, C. Gi Min, and Y. -S. Lee, Preparation of coffee grounds activated carbon-based supercapacitors with enhanced properties by oil extraction and their electrochemical properties, Appl. Chem. Eng., 34, 426-433 (2023).
  18. F. Taleb, M. Ammar, and M. Mosbah, Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption, Sci. Rep., 10, 11048 (2020).
  19. T. Sangprasert, V. Sattayarut, C. Rajrujithong, P. Khanchaitit, P. Khemthong, C. Chanthad, and N. Grisdanurak, Making use of the inherent nitrogen content of spent coffee grounds to create nanostructured activated carbon for supercapacitor and lithium-ion battery applications, Diam. Relat. Mater., 127, 109164 (2022).
  20. Q. Xie, S. Qu, Y. Zhang, and P. Zhao, Nitrogen-enriched graphene-like carbon architecture with tunable porosity derived from coffee ground as high performance anodes for lithium ion batteries, Appl. Surf. Sci., 537, 148092 (2021).