DOI QR코드

DOI QR Code

Physical and Chemical Adsorption Properties for Tetracycline Using Activated Carbon with Nitrogen Plasma Treatment

질소 플라즈마 처리된 활성탄소를 이용한 테트라사이클린의 물리 및 화학 흡착 특성

  • In Woo Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seongjae Myeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chung Gi Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seongmin Ha (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seoyeong Cheon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Young-Seak Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 이인우 (충남대학교 응용화학공학과) ;
  • 명성재 (충남대학교 응용화학공학과) ;
  • 민충기 (충남대학교 응용화학공학과) ;
  • 하성민 (충남대학교 응용화학공학과) ;
  • 천서영 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2023.10.06
  • Accepted : 2023.11.22
  • Published : 2024.02.10

Abstract

In this study, nitrogen plasma treatment was performed in 5, 10, and 15 minutes to improve the tetracycline adsorption performance of activated carbon. All nitrogen plasma-treated activated carbons showed improved tetracycline adsorption compared to untreated activated carbons. The nitrogen functional groups in activated carbon lead to chemisorption with tetracycline via π-π interactions and hydrogen bonding. In particular, in the nitrogen plasma treatment at 80 W and 50 kHz, the activated carbon treated for 10 minutes had the best adsorption performance. At this time, the nitrogen content on the surface of the activated carbon was 2.03% and the specific surface area increased to 1,483 m2/g. As a result, nitrogen plasma treatment of activated carbon improved its physical and chemical adsorption capabilities. In addition, since the adsorption experimental results were in good agreement with the Langmuir isotherm and pseudo-second order model, it was determined that the adsorption of tetracycline on the nitrogen plasma-treated activated carbon was dominated by chemical adsorption through a monolayer. As a result, nitrogen plasma-treated activated carbon can be used as an adsorbent to efficiently remove tetracycline from water due to the synergistic effect of physical adsorption and proactive chemical adsorption.

본 연구에서는 활성탄소의 테트라사이클린 흡착성능을 향상시키기 위해 5, 10, 및 15분의 시간에 따른 질소 플라즈마 처리를 실시하였다. 모든 질소 플라즈마 처리된 활성탄소는 미처리 활성탄소와 비교하여 테트라사이클린 흡착성능이 개선되었다. 이는 활성탄소에 도입된 질소 작용기가 테트라사이클린과 π-π 상호작용 및 수소 결합을 통하여 화학흡착을 야기하기 때문이다. 특히, 80 W 및 50 kHz의 질소 플라즈마 처리에서, 10분 동안 처리된 활성탄소가 가장 우수한 흡착성능을 가졌다. 이 때, 활성탄소 표면의 질소 함량은 2.03%이며 비표면적은 1,483 m2/g까지 증가하였다. 이렇게 질소플라즈마 처리에 의해 개선된 활성탄소는 물리 및 화학 흡착성능이 향상되었다. 또한, 흡착 실험 결과가 Langmuir 흡착등온식과 유사 2차 반응속도식에 잘 부합하므로, 질소 플라즈마 처리된 활성탄소의 테트라사이클린 흡착은 단분자층으로 이루어지는 화학 흡착이 주도적으로 일어나는 것으로 판단하였다. 결과적으로, 질소 플라즈마 처리된 활성탄소는 주도적인 화학 흡착과 더불어 물리 흡착의 시너지 효과로 수중에서 테트라사이클린을 효율적으로 제거하는 흡착재로 사용될 수 있다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 산업기술혁신사업(산업폐수처리용 석유잔사유 기반 다공성 흡착재 개발: 20012763)의 지원을 받아 수행되었습니다.

References

  1. R. Daghrir and P. Drogui, Tetracycline antibiotics in the environment: A review, Environ. Chem. Lett., 11, 209-227 (2013). https://doi.org/10.1007/s10311-013-0404-8
  2. A. C. Martins, O. Pezoti, A. L. Cazetta, K. C. Bedin, D. A. Yamazaki, G. F. Bandoch, T. Asefa, J. V. Visentainer, and V. C. Almeida, Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies, Chem. Eng. J., 260, 201-299 (2015).
  3. G. M. Islam and K. A. Gilbride, The effect of tetracycline on the structure of the bacterial community in a wastewater treatment system and its effects on nitrogen removal, J. Hazard. Mater., 371, 130-137 (2019). https://doi.org/10.1016/j.jhazmat.2019.02.032
  4. G. Gopal, S. A. Alex N. Chandrasekaran, and A. Mukherjee, A review on tetracycline removal from aqueous systems by advanced treatment techniques, RSC Adv., 10, 27081-27095 (2020). https://doi.org/10.1039/D0RA04264A
  5. J. Y. Jung, D. Lee, and Y. S. Lee, CNT-embedded hollow TiO2 nanofibers with high adsorption and photocatalytic activity under UV irradiation. Journal of Alloys and Compounds, J. Alloys Compd., 622, 651-656 (2015). https://doi.org/10.1016/j.jallcom.2014.09.068
  6. K. Yang, H. Lin, J. Jiang, J. Ma, and Z. Yang, Enhanced electrochemical oxidation of tetracycline and atrazine on SnO2 reactive electrochemical membranes by low-toxic bismuth, cerium doping, Sep. Purif. Technol., 297, 121453 (2022).
  7. Y. Zhang, Y. Li, W. Xu, M. Cui, M. Wang, B. Chen, Y. Sun, K. Chen, L. Li, Q. Du, X. Pi, and Y. Wang, Filtration and adsorption of tetracycline in aqueous solution by copper alginate-carbon nanotubes membrane which has the muscle-skeleton structure, Filtration and adsorption of tetracycline in aqueous solution by copper alginate-carbon nanotubes membrane which has the muscle-skeleton structure, Chem. Eng. Res. Des., 183, 424-438 (2022). https://doi.org/10.1016/j.cherd.2022.05.036
  8. C. Lim, H. R. An, H. Lee, R. Lee, Y. Choi, J. I. Park, J. Yoon, H. U. Lee, and Y. S. Lee, Carbon-titanium dioxide heterogeneous (photo)catalysts (C-TiO2) for highly efficient visible light photocatalytic application, Compos. B Eng., 241, 109997 (2022).
  9. C. Lim, H. R. An, S. Ha, S. Myeong, C. G. Min, H. J. Chung, B. Son, C. Y. Kim, J. I. Park, H. Kim, H. U. Lee, and Y. S. Lee, Highly visible-light-responsive nanoporous nitrogen-doped TiO2 (N-TiO2) photocatalysts produced by underwater plasma technology for environmental and biomedical applications, Appl. Surf. Sci., 638, 158123 (2023).
  10. M. Rahimi, E. Salehi, M. Mandooie, and N. Khalili, Adsorption/Ozonation integration for intensified ethyl acetate plant wastewater treatment: Process optimization and sensitivity analysis assessment, J. Ind. Eng. Chem., 120, 271-284 (2023). https://doi.org/10.1016/j.jiec.2022.12.034
  11. R. Lee, C. Lim, H. Lee, S. Kim, and Y. S. Lee, Visible light photocatalytic activity of TiO2 with carbon-fluorine heteroatoms simultaneously introduced by CF4 plasma, Korean J. Chem. Eng., 39, 3334-3342 (2022). https://doi.org/10.1007/s11814-022-1128-x
  12. X. Zhang, N. Yuan, S. Xu, Y. Li, and Q. Wang, Efficient adsorptive elimination of organic pollutants from aqueous solutions on ZIF-8/MWCNTs-COOH nanoadsorbents: Adsorption kinetics, isotherms, and thermodynamic study, J. Ind. Eng. Chem., 111, 155-167 (2022). https://doi.org/10.1016/j.jiec.2022.03.048
  13. N. Mahendran and K. Praveen, BiPO4/Fe-metal organic framework composite: A promising photocatalyst toward the abatement of tetracycline hydrochloride, Indigo Carmine and reduction of 4-nitrophenol, J. Ind. Eng. Chem., 100, 220-232 (2021). https://doi.org/10.1016/j.jiec.2021.05.020
  14. C. H. Kwak, C. Lim, S. Kim, and Y. S. Lee, Surface modification of carbon materials and its application as adsorbents, J. Ind. Eng. Chem., 116, 21-31 (2022). https://doi.org/10.1016/j.jiec.2022.08.043
  15. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the fluorination of activated carbons on the chromium ion adsorption, Appl. Chem. Eng., 26, 92-98 (2015). https://doi.org/10.14478/ace.2014.1126
  16. C. Lim, C. H. Kwak, S. G. Jeong, D. Kim, and Y. S. Lee, Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment, Carbon Lett., 33, 139-145 (2023). https://doi.org/10.1007/s42823-022-00410-1
  17. J. H. Kim, S. Cho, T. Bae, and Y. S. Lee, Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction, Sens. Actuators B Chem., 197, 20-27 (2014). https://doi.org/10.1016/j.snb.2014.02.054
  18. S. Kim, C. Lim, C. H. Kwak, D. Kim, S. Ha, and Y. S. Lee, Hydrophobic melamine sponge prepared by direct fluorination for efficient separation of emulsions, J. Ind. Eng. Chem., 118, 259-267 (2023). https://doi.org/10.1016/j.jiec.2022.11.011
  19. S. Myeong, C. Lim, S. Kim, and Y. S. Lee, High-efficiency oil/water separation of hydrophobic stainless steel Mesh filter through carbon and fluorine surface treatment, Korean J. Chem. Eng., 40, 1418-1424 (2023). https://doi.org/10.1007/s11814-022-1330-x
  20. E. Nabavi, K. P. Niavol, G. A. Dezvareh, and A. K. Darban, A combined treatment system of O3/UV oxidation and activated carbon adsorption: emerging contaminants in hospital wastewater, J. Water Health, 21, 463-490 (2023). https://doi.org/10.2166/wh.2023.213
  21. H. Wang, L. Shan, W. Shi, M. Wang, G. Quan, Z. Wang, L. Cui, and J. Yan, Facile synthesis of nitrogen-doped porous graphene for efficient adsorption of tetracycline: Behavior and mechanism, J. Environ. Chem. Eng., 11, 110218 (2023).
  22. X. Sun, J. Bao, K. Li, M. D. Argyle, G. Tan, H. Adidharma, M. Fan, and P. Ning, Advance in using plasma technology for modification or fabrication of carbon-based materials and their applications in environmental, material, and energy fields, Adv. Funct. Mater., 31, 2006287 (2021).
  23. G. Yang, H. Chen, H. Qin, and Y. Feng, Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups, Appl. Surf. Sci., 293, 299-305 (2014). https://doi.org/10.1016/j.apsusc.2013.12.155
  24. S. Han, Z. Wang, X. Pi, C. Wu, X. Wang, Y. Wang, X. Liu, and H. Zhao, Promotion of tetracycline degradation by electro-Fenton: controlling the reaction zone by N-doped modified activated carbon cathode. J. Clean. Prod., 370, 133524 (2022).
  25. H. Zhou, X. Li, and H. Jin, D. She, Mechanism of a double-channel nitrogen-doped lignin-based carbon on the highly selective removal of tetracycline from water, Bioresour. Technol., 346, 126652 (2022).
  26. M. Wei, F. Marrakchi, C. Yuan, X. Cheng, D. Jiang, F. F. Zafar, and Y. Fu, S. Wang, Adsorption modeling, thermodynamics, and DFT simulation of tetracycline onto mesoporous and high-surface-area NaOH-activated macroalgae carbon, J. Hazard. Mater., 425, 127887 (2022).
  27. M. Buddhadasa, B. Verougstraete, Y. Gomez-Rueda, D. Petitjean, J. F. Denayer, and F. Reniers, A study of plasma- porous carbon - CO2 interactions: Ammonia plasma treatment and CO2 capture, J. CO2 Util., 68, 102388 (2023).
  28. A. Svidrytski, D. Hlushkou, M. Thommes, P. A. Monson, and U. Tallarek, Modeling the impact of mesoporous silica microstructures on the adsorption hysteresis loop, J. Phys. Chem. C, 124, 21646-21655 (2020). https://doi.org/10.1021/acs.jpcc.0c07571
  29. C. Lim, S. Ha, N. Ha, S. G. Jeong, Y. S. Lee, Plasma treatment of CFX: the effect of surface chemical modification coupled with surface etching, Carbon Lett., Doi:10.1007/s42823-023-00597-x.
  30. C. G. Min, C. Lim, S. Myeong, and Y. S. Lee, Formaldehyde adsorption properties of activated carbon fiber-papers by nitrogen plasma treatment, Appl. Chem. Eng., 33, 624-629 (2022).
  31. S. H. So, S. Ha, C. G. Min, Y. S. Lee, and C. R. Park, Effects of nitrogen plasma treatments on hydrogen storage capacity of microporous carbon at room temperature and its feasibility as a hydrogen storage material, Carbon Lett., 33, 1027-1034 (2023). https://doi.org/10.1007/s42823-023-00524-0
  32. C. Li, X. Zhu, H. He, Y. Fang, H. Dong, J. Lu, J. Li, and Y. Li, Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: influence of biochar porosity and molecular size of antibiotics, J. Mol. Liq., 274, 353-361 (2019). https://doi.org/10.1016/j.molliq.2018.10.142
  33. Y. Tian and H. Zhou, A novel nitrogen-doped porous carbon derived from black liquor for efficient removal of Cr (VI) and tetracycline: Comparison with lignin porous carbon, J. Clean. Prod., 333, 130106 (2022).
  34. D. T. C. Nguyen, D. V. N. Vo, T. T. Nguyen, T. T. T. Nguyen, L. T. Nguyen, and T. Van Tran, Optimization of tetracycline adsorption onto zeolitic-imidazolate framework-based carbon using response surface methodology, Surf. Interfaces, 28, 101549 (2022).
  35. Y. Ding, W. Fan, Q. Xian, H. Dan, L. Zhu, and T. Duan, Capture of iodine gas by Bi0 modified silica with different morphologies: Influence of pore characteristic on the stable and unstable forms of adsorption, Chem. Eng. J., 451, 138887 (2023).
  36. Yesi, F. P. Sisnandy, Y. H. Ju, F. E. Soetaredjo, and S. Ismadji, Adsorption of acid blue 129 from aqueous solutions onto raw and surfactant-modified bentonite: application of temperature-dependent forms of adsorption isotherms, Adsorp. Sci. Technol., 28, 847-868 (2010). https://doi.org/10.1260/0263-6174.28.10.847
  37. M. I. Hoppen, K. Q. Carvalho, R. C. Ferreira, F. H. Passig, I. C. Pereira, R. C. P. Rizzo-Domingues, M. K. Lenzi, and R. C. R. Bottini, Adsorption and desorption of acetylsalicylic acid to activated carbon of babassu coconut mesocarp, J. Environ. Chem. Eng., 7, 102862 (2019).
  38. J. Chen, X. Wang, Y. Huang, S. Lv, X. Cao, J. Yun, and D. Cao, Adsorption removal of pollutant dyes in wastewater by nitrogen-doped porous carbons derived from natural leaves, Eng. Sci., 5, 30-38 (2018).