DOI QR코드

DOI QR Code

Numerical simulation and experimental study of non-stationary downburst outflow based on wall jet model

  • Yongli Zhong (School of Civil Engineering and Architecture, Chongqing University of Science and Technology) ;
  • Yichen Liu (School of Civil Engineering and Architecture, Chongqing University of Science and Technology) ;
  • Hua Zhang (CENTRAL-SOUTH Architectural Design Institute Co., Ltd) ;
  • Zhitao Yan (School of Civil Engineering and Architecture, Chongqing University of Science and Technology) ;
  • Xinpeng Liu (School of Civil Engineering and Architecture, Chongqing University of Science and Technology) ;
  • Jun Luo (School of Civil Engineering and Architecture, Chongqing University of Science and Technology) ;
  • Kaihong Bai (Chongqing Institute of Geology and Mineral Resources) ;
  • Feng Li (Chongqing Urban Investment Infrastructure Construction Co., Ltd)
  • 투고 : 2023.05.13
  • 심사 : 2024.01.26
  • 발행 : 2024.02.25

초록

Aiming at the problem of non-stationary wind field simulation of downbursts, a non-stationary down-burst generation system was designed by adding a nozzle and program control valve to the inlet of the original wall jet model. The computational fluid dynamics (CFD) method was used to simulate the downburst. Firstly, the two-dimensional (2D) model was used to study the outflow situation, and the database of working conditions was formed. Then the combined superposition of working conditions was carried out to simulate the full-scale measured downburst. The three-dimensional (3D) large eddy simulation (LES) was used for further verification based on this superposition condition. Finally, the wind tunnel test is used to further verify. The results show that after the valve is opened, the wind ve-locity at low altitude increases rapidly, then stays stable, and the wind velocity at each point fluctuates. The velocity of the 2D model matches the wind velocity trend of the measured downburst well. The 3D model matches the measured downburst flow in terms of wind velocity and pulsation characteris-tics. The time-varying mean wind velocity of the wind tunnel test is in better agreement with the meas-ured time-varying mean wind velocity of the downburst. The power spectrum of fluctuating wind ve-locity at different vertical heights for the test condition also agrees well with the von Karman spectrum, and conforms to the "-5/3" law. The vertical profile of the maximum time-varying average wind veloci-ty obtained from the test shows the basic characteristics of the typical wind profile of the downburst. The effectiveness of the downburst generation system is verified.

키워드

과제정보

The research described in this paper was financially supported by National Natural Science Foundation of China (Grant No. 52008070, 52178458), the Project funded by the China Postdoctoral Science Foundation (Grant No. 2023M734084), and Chongqing University of Science and Technology Postgraduate Innovation Program (Grant No. YKJCX2220642). Chongqing Natural Science Foundation (CSTB2022NSCQ-MSX0363, CSTB2023NSCQ-LZX0051), and Chongqing Urban Investment Infrastructure Construction Co., Ltd Program (Grant No. CQCT-JS-SC-GC-2022-0079)

참고문헌

  1. Abd-Elaal, E., Mills, J.E., Ma, X. (2018), "Numerical simulation of downburst wind flow over real topography", J. Wind Eng. Ind. Aerod., 172, 85-95. https://doi.org/10.1016/j.jweia.2017.10.026. 
  2. Abdelwahab, M., Ghazal, T. and Aboshosha, H. (2022), "Designing a multi-purpose wind tunnel suitable for limited spaces", Results Eng, 14, 100458. https://doi.org/10.1016/j.rineng.2022.100458. 
  3. Aboshosha, H., Bitsuamlak, G. and Damatty, A.E. (2015), "Turbulence characterization of downbursts using LES", J. Wind Eng. Ind. Aerod., 136(136), 44-61. https://doi.org/10.1016/j.jweia.2014.10.020. 
  4. Aboutabikh, M., Ghazal, T., Chen, J., Elgamal, S. and Aboshosha, H. (2019), "Designing a blade-system to generate downburst outflows at boundary layer wind tunnel", J. Wind Eng. Ind. Aerod., 186, 169-191. https://doi.org/10.1016/j.jweia.2019.01.005. 
  5. Abrahamsson, H., Johansson, B. and Lofdahl, L. (1994), "Turbulent plane two-dimensional wall-jet in a quiescent surrounding", Eur. J. Mech. B. Fluids, 13(5), 533-556. 
  6. Asano, K., Iida, Y. and Uematsu, Y. (2019), "Laboratory study of wind loads on a low-rise building in a downburst using a moving pulsed jet simulator and their comparison with other types of simulators", J. Wind Eng. Ind. Aerod., 184, 313-320. https://doi.org/10.1016/j.jweia.2018.11.034. 
  7. Banyassady, R. and Piomelli, U. (2015), "Interaction of inner and outer layers in plane and radial wall jets", J. Turbul., 16(5), 460-483. https://doi.org/10.1080/14685248.2015.1008008. 
  8. Bedard, A.J. and Caplan, S.J. (1987), "Microburst vorticity", 25th AIAA Aerospace Sciences Meeting, Nevada, USA, January. https://doi.org/10.2514/6.1987-440. 
  9. Cassar, R. (1992), "Simulation of a thunderstorm downdraft by a wind tunnel jet, Summer vacation report", DBCE CSIRO, 92. 
  10. Chay, M.T. and Letchford, C.W. (2002), "Pressure distributions on a cube in a simulated thunderstorm downburst. Part A: Stationary downburst observations", J. Wind Eng. Ind. Aerod., 90(7), 711-732. https://doi.org/10.1016/S0167-6105(02)00158-7. 
  11. Chen, Y., Liu, G., Xu, T. and Yu, S. (2012), "Time Histories of Horizontal Wind Velocity of Moving Thunderstorms and Pheno-menological Model", J. Tongji Univ. Nat. Sci., 40(1), 22-21 (in Chinese). https://doi.org/10.3969/j.issn.0253-374x.2012.01.004. 
  12. Cooper, D., Jackson, D. C., Launder, B.E. and Liao, G.X. (1993), "Impinging jet studies for turbulence model assessment-I. Flow-field experiments", Int. J. Heat & Mass Transfer, 36(10), 2675-2684. https://doi.org/10.1016/S0017-9310(05)80204-2. 
  13. Dong, Z. (2005), Jet Mechanics, Science Press, Beijing, China (in Chinese). 
  14. Duan, M., Xie, Z. and Shi, B. (2012), "Experimental study on simulation of downburst in atmospheric boundary layer wind tunnel", J. Build. Struct., 33(3), 126-131 (in Chinese). https://doi.org/10.14006/j.jzjgxb.2012.03.017. 
  15. Dunn, M. (2010), "An experimental study of a plane turbulent wall jet using particle image velocimetry", Ph.D. Dissertation, University of Saskatchewan, Saskatoon, Canada. 
  16. Eriksson, J.G., Karlsson, R.I. and Persson, J. (1998), "An experimental study of a two-dimensional plane turbulent wall jet", Exp. Fluids, 25(1), 50-60. https://doi.org/10.1007/s003480050207. 
  17. Fang, Z., Wang, Z., Li, Z., Yan, J. and Huang, H. (2022), "Wind field characteristics of stationary and moving downbursts based on the test of impinging jet with a movable nozzle", J. Wind Eng. Ind. Aerod., 232, 105266. https://doi.org/10.1016/j.jweia.2022.105266. 
  18. Fujita, T.T. (1985), The downburst: Micoburst and Macroburst: report of projects NIMROD and JAWS. Satellite and Mesometeorology Research Project, Dept. of the Geophysical Sciences, University of Chicago, Chicago, USA. 
  19. Fujita, T.T., Wakimoto, R.M. (1981), "Five scales of airflow associated with a series of downbursts on 16 July 1980", Mon. Weather Rev., 109(7), 1438-1456.  https://doi.org/10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2
  20. Ghazal, T., Aboutabikh, M., Aboshosha, H. and Abdelwahab, M. (2022), "Thunderstorm wind load evaluation on storm shelters using wind tunnel testing", Eng. Struct., 262, 114350. https://doi.org/10.1016/j.engstruct.2022.114350. 
  21. Hjelmfelt, M.R. (1988), "Structure and life cycle of microburst outflows observed in Colorado", J. Appl. Meteorol., 27(8), 900-927. https://doi.org/10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2. 
  22. Holmes, J.D. (1992), "Physical modelling of thunderstorm downdrafts by wind tunnel jet", Proceedings of the Second AWES Workshop, Melbourne, Australia, February. 
  23. Ibrahim, I., Aboshosha, H. and El Damatty, A. (2020), "Numerical characterization of downburst wind field at WindEEE dome", Wind Struct, 30(3), 231-243. https://doi.org/10.12989/was.2020.30.3.231. 
  24. Kim, J. and Hangan, H. (2007), "Numerical simulations of impinging jets with application to downbursts", J. Wind Eng. Ind. Aerod., 95(4), 279-298. https://doi.org/10.1016/j.jweia.2006.07.002. 
  25. Le, V. and Caracoglia, L. (2019), "Generation and characterization of a non-stationary flow field in a small-scale wind tunnel using a multi-blade flow device", J. Wind Eng. Ind. Aerod., 186, 1-16. https://doi.org/10.1016/j.jweia.2018.12.017. 
  26. Le, V. and Caracoglia, L. (2020), "Experimental investigation on non-stationary wind loading effects generated with a multiblade flow device", J. Fluids Struct., 96, 103049. https://doi.org/10.1016/j.jfluidstructs.2020.103049. 
  27. Letchford, C. W., Chay, M. T. (2002), "Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: moving downburst observations", J. Wind Eng. Ind. Aerod., 90(7), 733-753. https://doi.org/10.1016/S0167-6105(02)00163-0. 
  28. Letchford, C.W. and Illidge, G. (1999), "Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet", Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, Denmark, June. 
  29. Lin, W.E. and Savory, E. (2006), "Large-scale quasi-steady modelling of a downburst outflow using a slot jet", Wind Struct., 9(6), 419-440. https://doi.org/10.12989/was.2006.9.6.419. 
  30. Lin, W.E. and Savory, E. (2010), "Physical modelling of a downdraft outflow with a slot jet", Wind Struct., 13(5), 385-412. https://doi.org/10.12989/was.2010.13.5.385. 
  31. Lin, W.E., Orf, L.G., Savory, E. and Novacco, C. (2007), "Proposed large-scale modelling of the transient features of a downburst outflow", Wind Struct., 10(4), 315-346. https://doi.org/10.12989/was.2007.10.4.315. 
  32. Lin, W.E., Savory, E., Mcintyre, R.P., Vandelaar, C.S. and King, J.P.C. (2012), "The response of an overhead electrical power transmission line to two types of wind forcing", J. Wind Eng. Ind. Aerod., 100(1), 58-69. https://doi.org/10.1016/j.jweia.2011.10.005. 
  33. Luo, Q., Duan, H. and Yan, L. (2014), "Three-dimensional visual simulation of civil aircraft taking off in wind shear", CAAI Trans. Intell. Syst., 9(1), 19-25 (in Chinese). https://doi.org/10.3969/j.issn.1673-4785.201307041. 
  34. Mason, M.S., Letchford, C.W. and James, D.L. (2005), "Pulsed wall jet simulation of a stationary thunderstorm downburst, Part A: Physical structure and flow field characterization", J. Wind Eng. Ind. Aerod., 93(7), 557-580. https://doi.org/10.1016/j.jweia.2005.05.006. 
  35. Mason, M.S., Wood, G.S. and Fletcher, D.F. (2009), "Numerical simulation of downburst winds", J. Wind Eng. Ind. Aerod., 97(11-12), 523-539. https://doi.org/10.1016/j.jweia.2009.07.010. 
  36. Mcconville, A.C., Sterling, M. and Baker, C.J. (2009), "The physical simulation of thunderstorm downbursts using an impinging jet", Wind Struct., 12(2), 133-149. https://doi.org/10.12989/was.2009.12.2.133. 
  37. McIntyre, R., Savory, E., Wu, H., Ting, D.S.K. (2019), "The effect of the nozzle top lip thickness on a two-dimensional wall jet", J. Fluids Eng., 141(5), 051106. https://doi.org/10.1115/1.4041560. 
  38. Mejia, A.D., Elawady, A., Vutukuru, K.S., Chen, D. and Chowdhury, A.G. (2022), "Examination of different Wall Jet and Impinging Jet concepts to produce large-scale downburst outflow", Front. Built Environ., 8:980617. https://doi.org/10.3389/fbuil.2022.980617. 
  39. Orwig, K.D. and Schroeder, J.L. (2007), "Near-surface wind characteristics of extreme thunderstorm outflows", J. Wind Eng. Ind. Aerod., 95(7), 565-584. https://doi.org/10.1016/j.jweia.2006.12.002. 
  40. Oseguera, R.M. and Bowles, R.L. (1988), "A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow", Hampton: NASA Technical Memorandum. 
  41. Proctor, F.H. (1988), "Numerical simulations of an isolated microburst. Part I: Dynamics and structure", J. Atmos. Sci., 45(21), 3137-3160. https://doi.org/10.1175/1520-0469(1988)045<3137:nsoaim>2.0.co;2. 
  42. Rostamy, N., Bergstrom, D.J., Deutscher, D., Sumner, D. and Bugg, J.D. (2009), "An experimental study of a plane turbulent wall jet using LDA", Turbulence, Heat and Mass Transfer 6. Proceedings of the Sixth International Symposium On Turbulence, Heat and Mass Transfer. https://doi.org/10.1615/ICHMT.2009.TurbulHeatMassTransf.670. 
  43. Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050. 
  44. Vicroy, D.D. (1992), "Assessment of microburst models for downdraft estimation", J. Aircr., 29(6), 1043-1048. https://doi.org/10.2514/3.46282. 
  45. Wood, G.S., Kwok, K., Motteram, N.A. and Fletcher, D.F. (2001), "Physical and numerical modelling of thunderstorm downbursts", J. Wind Eng. Ind. Aerod., 89(6), 535-552. https://doi.org/10.1016/s0167-6105(00)00090-8. 
  46. Wood, J.N., Breuer, M. and Neumann, T. (2022), "A novel approach for artificially generating horizontal wind gusts based on a movable plate: The Paddle", J. Wind Eng. Ind. Aerod., 230, 105170. https://doi.org/10.1016/j.jweia.2022.105170. 
  47. Wygnanski, I., Katz, Y. and Horev, E. (1992), "On the applicability of various scaling laws to the turbulent wall jet", J. Fluid Mech., 234(1), 669-690. https://doi.org/10.1017/S002211209200096X. 
  48. Xin, Y., Liu, Z., Shao, X., Chen, Y. and Chen, Z. (2019), "Effects of downburst on long-span continuous rigid frame bridges", China J. Highw. Transp., 32(10), 279-290 (in Chinese). https://doi.org/10.19721/j.cnki.1001-7372.2019.10.027. 
  49. Xu, T., Chen, Y., Peng, Z., Lou, W. and Sun, B. (2009), "Wind tunnel design and steady flow field measurement for thunderstorm downburst experiment", J. Exp. Mech., 24(6), 505-512 (in Chinese). https://doi.org/10.1360/972009-1551. 
  50. Yan, J., Huang, H. and Liu, H. (2018), "The physical simulation and applications in buildings wind resistance experimental study of downburst", Sichuan Build. Sci., 44(3), 56-61 (in Chinese). https://doi.org/10.19794/j.cnki.1008-1933.2018.03.012. 
  51. Yan, Z., Zhong, Y., Cheng, X., Mcintyre, R.P. and Savory, E. (2018a), "A numerical study of a confined turbulent wall jet with an external stream", Wind Struct., 27(2), 101-109. https://doi.org/10.12989/was.2018.27.2.101. 
  52. Yan, Z., Zhong, Y., Lin, W. E., Savory, E., You, Y. and Li, C. (2018b), "Evaluation of RANS and LES turbulence models for simulating a steady 2-D plane wall jet", Eng. Comput., 35(1), 211-234. https://doi.org/10.1108/EC-11-2016-0397. 
  53. Zhong, Y., Yan, Z., Li, Y., Luo, J. and Zhang, H. (2021), "Numerical study on plane and radial wall jets to validate the 2D assumption for an idealized downburst outflow", Adv. Civ. Eng., 2021. https://doi.org/10.1155/2021/9993981. 
  54. Zhong, Y., Yan, Z., Wang, L. and You, Y. (2018), "Large Eddy Simulation of Unsteady Downburst Outflow Based on Wall Jet Model", J. Southwest Jiaotong Univ., 53(6), 1179-1186 (in Chinese). https://doi.org/10.3969/j.issn.0258-2724.2018.06.013.