References
- Andre, M., Mier-Torrecilla, M. and Wuchner, R. (2015), "Numerical simulation of wind loads on a parabolic trough solar collector using lattice Boltzmann and finite element methods", J. Wind Eng. Ind. Aerod., 146, 185-194. https://doi.org/10.1016/j.jweia.2015.08.010.
- Arasu A.V. and Sornakumar T. (2007), "Design, manufacture and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors", Solar Energy, 81(10), 1273-1279. https://doi.org/10.1016/j.solener.2007.01.005
- Baniamerian, Z. and Mehdipour, R. (2017), "Studying effects of fence and sheltering on the aerodynamic forces experienced by parabolic trough solar collectors", J. Fluids Eng., 139(3). https://doi.org/10.1115/1.4034951.
- Chavez, O.H., Salgado, J.D., Cil, C.O., Escalona, J.J., Cedillo, S.T. and Cuamatzi, R. (2019), "3D CFD wind flow analysis technique applied to a parabolic solar tracker for two extreme weather conditions with experimental results and a controller proposition", J. Renew. Sustain. Energy, 11(2), 023702. https://doi.org/10.1063/1.5054004.
- Christo, F.C. (2012), "Numerical modelling of wind and dust patterns around a full-scale paraboloidal solar dish", Renew. Energy, 39(1), 356-366. https://doi.org/10.1016/j.renene.2011.08.038.
- Drikakis. D. and Dbouk, T. (2022), "The role of computational science in wind and solar energy: A critical review", Energies, 15(24), 9609. https://doi.org/10.3390/en15249609.
- Eswaramoorthy, M. and Shanmugam, S. (2012), "The thermal performance of a low cost solar parabolic dish collector for process heat. Energy Sources", Part A: Recovery. Utilization. Environ. Effects, 34(18), 1731-1736. https://doi.org/10.1080/15567036.2010.490825.
- Garcia, M.C., Conzuelo, A.P., Carranza, O.H., Uribe, J.R.D., Nava, U.E.E. and Oliva, V.I.M. (2019), "Testing the surface quality of a reflective parabolic trough solar collector with two flat null-screens", Appl. Optics, 58(4), 752-763. https://doi.org/10.1364/ao.58.000752.
- Glynn John, S. and Lakshmanan, T. (2017), "Cost optimization of dish solar concentrators for improved scalability decisions", Renew. Energy, 114, 600-613. https://doi.org/10.1016/j.renene.2017.07.037.
- Hachicha, A.A., Rodriguez, I., Castro, J. and Oliva, A. (2013), "Numerical simulation of wind flow around a parabolic trough solar collector", Appl. Energy, 107, 426-437. https://doi.org/10.1016/j.apenergy.2013.02.014
- Holmes, J.D., Banks, R.W. and Roberts, G. (1993), "Drag and aerodynamic interference on microwave dish antennas and their supporting towers", J. Wind Eng. Ind. Aerod., 50, 263-269. https://doi.org/10.1016/0167-6105(93)90081-X.
- Jaffe, L.D. (1989), "Test results on parabolic dish concentrators for solar thermal power systems", Solar Energy, 42(2), 173-187. https://doi.org/10.1016/0038-092X(89)90144-8.
- Lombardi, G. (1991), "Wind-tunnel tests on a model antenna rotating in a cross flow", Eng. Struct., 13(4), 345-350. https://doi.org/10.1016/0141-0296(91)90020-D.
- Manikandan, G.K., Iniyan, S. and Goic, R. (2019), "Enhancing the optical and thermal efficiency of a parabolic trough collector-A review", Appl. Energy, 235, 1524-1540. https://doi.org/10.1016/j.apenergy.2018.11.048.
- Mannini, C. (2023), "Codes and standards on computational wind engineering for structural design: State of art and recent trends", Wind Struct., 37(2), 133-151. https://doi.org/10.12989/was.2023.37.2.133.
- Paetzold, J., Cochard, S., Fletcher, D.F. and Vassallo, A. (2015), "Wind engineering analysis of parabolic trough collectors to optimise wind loads and heat loss", Energy Procedia, 69, 168-177. https://doi.org/10.1016/j.egypro.2015.03.020.
- Paitoonsurikarn, S. and Lovegrove, K. (2006), "Effect of paraboloidal dish structure on the wind near a cavity receiver", In Proceedings of the 44th Annual Conference of the Australian and New Zealand Solar Energy Society, Canberra, Australia, September.
- Paul1a, R. and Dalui, S.K. (2022), "Aerodynamic shape optimization of a high-rise rectangular building with wings", Wind Struct., 34(3), 259-274. https://doi.org/10.12989/was.2022.34.3.259.
- Qianjun, M., Ming, X., Yong, S. and Yuan, Y. (2014), "Study on solar photo-thermal conversion efficiency of a solar parabolic dish system", Environ. Progress Sustain. Energy, 33(4), 1438-1444. https://doi.org/10.1002/ep.11914.
- Reddy, K.S., Natarajan, S.K. and Veershetty, G. (2015), "Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator", Renew. Energy, 74, 148-157. https://doi.org/10.1016/j.renene.2014.07.058.
- Reddy, K.S., Veershetty, G. and Vikram, T.S. (2016), "Effect of wind speed and direction on convective heat losses from solar parabolic dish modified cavity receiver", Solar Energy, 131, 183-198. https://doi.org/10.1016/j.solener.2016.02.039.
- Sharmaa, D., Palb, S. and Raj, R. (2023), "Numerical prediction of the proximity effects on wind loads of low-rise buildings with cylindrical roofs", Wind Struct., 36(4), 277-292. https://doi.org/10.12989/was.2023.36.4.277.
- Uzair, M. (2018), "Wind induced heat losses from solar dish-receiver systems", Doctoral dissertation, Auckland University of Technology, New Zealand.
- Uzair, M., Anderson, T. and Nates, R. (2014), "Wind flow around a parabolic dish solar concentrator", In Proceedings of 2014 Asia-Pacific Solar Research Conference, University of New South Wales, Sydney, December.
- Uzair, M., Anderson, T., Nates, R. and Jouin, E. (2015), "A validated simulation of wind flow around a parabolic dish". In Proceedings of 2015 Asia-Pacific Solar Research Conference, Australian PV Institute, Brisbane, December.
- Wagner, G.L. (1996), "Solar concentrator wind loadings", Master Thesis, Texas Tech University, Texas, USA.
- Yan J., Peng Y. and Liu Y., (2023), "Wind load and load-carrying optical performance of a large solar dish/stirling power system with 17.7 m diameter", Energy, 283, 129207, https://doi.org/10.1016/j.energy.2023.129207.
- Zemler, M.K., Bohl, G., Rios, O. and Boetcher, S.K. (2013), "Numerical study of wind forces on parabolic solar collectors", Renew. Energy, 60, 498-505. https://doi.org/10.1016/j.renene.2013.05.023.