Acknowledgement
본 논문은 2022년도 중소벤처기업부 스마트 제조 혁신기술개발사업 (R&D) 사업(No.RS-2022-00140739)과 2022년도 정부(교육부)의 재원으로 한국 연구재단의 지원을 받아 수행되었음(No. NRF-2022R111A1A01066264).
References
- S. Kim, J. Kong, S. Lee, and S. Lee, "Recent advances of artificial intelligence in manufacturing industrial sectors: A review," Int. J. of Precision Eng. and Manuf., vol. 23, 2022, pp. 111-129. https://doi.org/10.1007/s12541-021-00600-3
- R. Cioffi, M. Travaglioni, and G. Piscitelli, A. Petrillo, and F. Felice, "Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions," Sustainability, vol. 12. no. 2, 2020, pp. 492-518. https://doi.org/10.3390/su12020492
- B. Kim, J. Park, K. Kim, S. Han, and K. Kim, "An Artificial Inteligent based Learning Model for BIM Elements Usage," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 1, 2023, pp. 107-114.
- J. Kang, J. Park, S. Han, and K. Kim, "Development of Machine Learning-based Flood Depth and Location Prediction Model.", J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 1, 2023, pp. 91-98.
- A. Zabin, V. Gonzalez, Y. Zou, and R. Amor, "Applications of machine learning to BIM: A systematic literature review," Adv. Eng. Informatics, vol. 51, 2022, pp. 101474.
- S. Hashemi, O. Ebadati, and H. Kaur, "Cost estimation and prediction in construction projects: a systematic review on machine learning techniques," SN Applied Sciences, vol. 2, no. 10, 2020, pp 1-27. https://doi.org/10.1007/s42452-019-1685-8
- T. Van and T. Quoc, "Research trends on machine learning in construction management: A scientometric analysis," J. Applied Sci. and Tech. Trends, vol. 2, no. 3, 2021, pp. 96-104.
- N. Wang, R. Issa, and C. Anumba, "Transfer learning-based query classification for intelligent building information spoken dialogue," Automation in Construction, vol. 141, 2022, pp. 104403.
- F. Elghaish, J. K. Chauhan, S. Matarneh, F. P. Rahimian, and M. R. Hosseini, "Artificial intelligence-based voice assistant for BIM data management," Automation in Construction, vol. 140, 2022, pp. 104320.
- T. H. Lin, Y. Huang, and A. Putranto, "Intelligent question and answer system for building information modeling and artificial intelligence of things based on the bidirectional encoder representations from transformers model," Automation in Construction, vol. 142, 2022, pp. 104483.
- J. Devlin, M. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of deep bidirectional transformers for language understanding," arXiv preprint arXiv:1810.04805, Oct. 2018.
- T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, "Language models are few-shot learners," Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 1877-1901.
- L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe, "Training language models to follow instructions with human feedback," Adv. Neural Inf. Process. Syst., vol. 35, 2022, pp. 27730-27744.
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, and X. Zheng, "Tensorflow: Large-scale machine learning on heterogeneous distributed systems," arXiv preprint arXiv:1603.04467, Mar. 2016.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, Dec. 2014.