DOI QR코드

DOI QR Code

Radio Propagation Characteristics of Different Frequency Bands in Multiple Paths According to Antenna Position in an Indoor Lobby Environment

실내 로비 환경에서 안테나 위치에 따른 다중 경로의 서로 다른 주파수 대역의 전파 특성

  • 이성훈 (순천대학교 전자공학과) ;
  • 조병록 (순천대학교 전자공학과)
  • Received : 2023.10.24
  • Accepted : 2024.02.17
  • Published : 2024.02.29

Abstract

The radio propagation characteristics of the 6, 10, and 17 GHz frequency bands in multiple paths in an indoor lobby environment were analyzed. The line-of-sight (LOS) and non-LOS (NLOS) paths were measured from a distance of 2-16 m (0.5 m intervals) from the transmitting to the receiving antenna positions. For basic transmission losses, three parameters were compared using the floating intercept path loss model corresponding to the path. For a root mean square delay spread, the measurement results were compared for cumulative probabilities of 10, 50, and 90%. Propagation loss and propagation delay occurred in all measured frequencies owing to the existence of pillars and an unusual lobby structure. Thus, a measurement scenario for an indoor lobby environment and the provision of standard measurement data was proposed. The results may facilitate research on the radio propagation characteristics of 5G and millimeter-wave bands in indoor lobby environments with various structures.

실내 로비 환경에서 다중 경로에서 6, 10, 17 GHz 주파수 대역의 전파 특성을 분석하였다. 가시선(Line-of-sight, LOS) 및 비가시선(Non-line-of-sight, NLOS) 경로는 송신 안테나 위치에서 수신 안테나 위치까지 2-16 m (0.5 m 간격) 거리에서 측정되었다. 기본 전송 손실은 경로에 해당하는 FI(Floating intercept) 경로 손실 모델을 사용하여 세 가지 매개변수를 비교하였다. RMS(Root mean square) 지연 확산은 측정 결과를 누적 확률 10, 50, 90%로 비교하였다. 기둥의 존재와 특이한 로비 구조로 인해 측정된 모든 주파수에서 전파 손실과 전파 지연이 발생하였다. 이에 실내 로비 환경에 대한 측정 시나리오와 표준 측정 데이터 제공을 제안하였다. 이를 통해 다양한 구조의 실내 로비 환경에서 5G 및 밀리미터파 대역의 전파 특성에 대한 연구에 기여할 것이다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (RS-2023-00260829, 인빌딩 3차원 전파특성 자동 측정·분석·모델링 기술 개발)

References

  1. A. Bamba, F. Mani, and R. D'Errico, "Millimeter-Wave Indoor Channel Characteristics in V and E Bands," IEEE Trans. on Antennas and Propagation, vol. 66, no. 10, Oct. 2018, pp. 5409-5424.  https://doi.org/10.1109/TAP.2018.2851927
  2. E. Tanghe, W. Joseph, L. Verloock, L. Verloock, L. Martens, H. Capoen, K. V. Herwegen, W. Vantomme, "The Industrial Indoor Channel: Large-Scale and Temporal Fading at 900, 2400, and 5200 MHz," IEEE Trans. on Wireless Communication, vol. 7, no. 7, July 2008, pp. 2740-2751.  https://doi.org/10.1109/TWC.2008.070143
  3. S. Lee, B. Cho, and H. Lee, "Analysis of Propagation Characteristics according to the Change of Transmitter-Receiver Location in Indoor Environment," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 2, 2020, pp. 211-217. 
  4. S. Lee, H. Lee, and B. Cho, "Delay Spread Measurement and Analysis in 3 GHz and 6 GHz Indoor Environments," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 1, 2020, pp. 15-20. 
  5. D. Kim and S. Oh, "Verification and Analysis for Recommendation ITU-R P.526, P.1546, P.1812 of Propagation Model Loaded in Spectrum Management Intelligent System," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 2, 2021, pp. 247-254. 
  6. ITU, "Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 450 GHz," Recommendation ITU-R P.1238-11, Geneva, 2021, pp. 1-27. 
  7. G. Zhang, P. Hanpinitsak, X. Cai, W. Fan, K. Saito, J. Takada, G. F. Pedersen, "Millimeter-Wave Channel Characterization in Large Hall Scenario at the 10 and 28 GHz Bands," 2019 13th European Conf. on Antennas and Propagation (EuCAP 2019), Krakow, Poland, 2019, pp. 1-4. 
  8. X. Zhang, G. Qiu, J. Zhang, L. Tian, P. Tang, and T. Jiang, "Analysis of Millimeter-Wave Channel Characteristics Based on Channel Measurements in Indoor Environments at 39 GHz," 2019 11th Int. Conf. on Wireless Communications and Signal Processing (WCSP), Xi'an, China, 2019, pp. 1-6. 
  9. S. Lee and B. Cho, "Measurement and Analysis of Local Average Power According to Averaging Length Changes of 3, 6, 10, and 17 GHz in an Indoor Corridor Environment," Int. J. of Antennas and Propagation, vol. 2023, Article ID 1485543, Jan. 2023, pp. 1-7. 
  10. R. A. Valenzuela, O. Landron, and D. L. Jacobs, "Estimating Local Mean Signal Strength of Indoor Multipath Propagation," IEEE Trans. on Vehicular Technology, vol. 46, no. 1, Feb. 1997, pp. 203-212.  https://doi.org/10.1109/25.554753
  11. H. Obeidat, A. A. S. Alabdullah, N. T. Ali, R. Asif, O. Obeidat, M. S. A. B. Melha, W. Shuaieb, R. A. A. Alhameed, P. Excell, "Local Average Signal Strength Estimation for Indoor Multipath Propagation," IEEE Access, vol. 7, 2019, pp. 75166-75176.  https://doi.org/10.1109/ACCESS.2019.2918178
  12. S. Lee and B. Cho, "Analysis of Propagation Characteristics in 6, 10, and 17 GHz Semi-Basement Indoor Corridor Environment," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 4, Aug. 2022, pp. 555-562. 
  13. N. R. Zulkefly, T. A. Rahman, M. H. Azmi, and O. A. Aziz, "6.5 GHz and 10.2 GHz Path Loss Measurements and Modeling for 5G Communications System Prediction," Int. J. of Research in Engineering Technology, vol. 6, no. 11, Nov. 2017, pp. 6-11.  https://doi.org/10.15623/ijret.2017.0611002
  14. M. B. Majed, T. A. Rahman, O. A. Aziz, M. N. Hindia, and E. Hanafi, "Channel Characterization and Path Loss Modeling in Indoor Environment at 4.5, 28, and 38 GHz for 5G Cellular Networks," Int. J. of Antennas and Propagation, vol. 2018, Sept. 2018, pp. 1-14.  https://doi.org/10.1155/2018/9142367
  15. H. Hashemi, "Impulse Response Modeling of Indoor Radio Propagation Channels," IEEE J. on Selected Areas of Communication, vol. 119, no. 7, Sept. 1993, pp. 967-978.  https://doi.org/10.1109/49.233210
  16. H. Hashemi and D. Tholl, "Statistical Modeling and Simulation of the RMS Delay Spread of Indoor Radio Propagation Channels," IEEE Trans. on Vehicular Technology, vol. 43, no. 1, Feb. 1994, pp. 110-120. https://doi.org/10.1109/25.282271