DOI QR코드

DOI QR Code

Comparative Evaluation of Concrete Compressive Strength According to the Type of Apartment Building Finishing Materials Using Nondestructive Testing

비파괴검사법을 이용한 공동주택 마감재 종류에 따른 콘크리트 압축강도 비교평가

  • Received : 2023.12.27
  • Accepted : 2024.01.02
  • Published : 2024.02.28

Abstract

In the case of apartment building, it is difficult to conduct non-destructive testing due to the actual presence of people and the dust and noise generated during the core test, so inspections are performed each time in the common area and underground parking lot, and the tests are conducted on the finishing material rather than on the concrete surface due to low-cost orders. As the process progresses, poor inspection is inevitable. In addition, the proposed formulas for strength estimation have large fluctuations depending on the differences in test conditions and environments, and even if they show the same measured value, the deviation between each proposed formula is large, making it difficult to accurately estimate strength, making it difficult to use. Accordingly, we would like to select finishing materials mainly used in apartment complexes and compare and evaluate the compressive strength of concrete according to the type of finishing material by using non-destructive testing methods directly on the finishing materials without removing the finishing materials. The reliability evaluation results of the estimated compressive strength of concrete using the ultrasonic velocity method according to the type of finishing material are as follows. The error rate between the estimated compressive strength and compressive strength derived through the ultrasonic velocity method shows a wide range of variation, ranging from 21.83% to 58.89%. The effect of the presence or absence of finishing materials on the estimated compressive strength was found to be insignificant. Accordingly, it is necessary to select more types of finishing materials and study ultrasonic velocity methods according to the presence or absence of finishing materials, and to study estimation techniques that can increase reliability.

공동주택의 경우 사람의 실거주 및 코어시험 시 일어나는 분진 및 소음 등으로 인하여 비파괴검사를 진행하기 어려워 공용부 및 지하 주차장에서 매번 점검이 이루어지며, 저가 수주로 인한 콘크리트 면의 실험이 아닌 마감재 위에서 실험을 진행하여 부실점검이 발생할 수 밖에 없는 실정이다. 또한 강도 추정을 위한 제안식들은 시험조건과 환경의 차이에 따라 변동폭이 크고, 동일한 측정값을 나타내더라도 제안식 마다 그 편차가 커 정확한 강도 추정이 어려워 사용에 어려움을 겪고 있는 실정이다. 이에 공동주택에 주로 사용되는 마감재를 선정하여 마감재를 제거하지 않고 직접 마감재에 비파괴검사법을 활용하여 마감재 종류에 따른 콘크리트 압축강도 비교 평가를 하고자 한다. 마감재 종류에 따른 초음파속도법을 이용한 콘크리트 추정압축강도 신뢰도 평과 결과는 다음과 같다. 초음파속도법을 통해 도출된 추정압축강도와 압축강도의 오차율은 21.83% ~58.89%로 광범위한 변동폭을 보이며. 추정압축강도에 대한 마감재 유무의 영향은 미비한 것으로 나타났다. 이에 마감재 종류를 더 선정하여 마감재 유무에 따른 초음파속도법 연구가 필요하며 신뢰도를 높일 수 있는 추정기법 연구가 필요하다.

Keywords

Acknowledgement

이 연구는 한국연구재단에서 지원하는 우석대학교 LINC+ 사업을 수행한 연구 성과의 일부이며, (주)우리엔지니어링과 공동으로 수행되었습니다.

References

  1. Lee, J. H., and Heon, Y. S., (2019), Improvement measures through case analysis of collapse with scaffolding and temporary structures, Journal of Next-generation Convergence Technology Association, 3(3), 116-124 (in Korean). https://doi.org/10.33097/JNCTA.2019.03.03.116
  2. Lee, H. K., Lee, B. J., Oh, K. C., and Kim, Yun, Y., Y. (2015), Reliability Evaluation for Prediction of Concrete Compressive Strength through Impact Resonance Method and Ultra Pulse Velocity Method, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(4), 18-24 (in Korean). https://doi.org/10.11112/jksmi.2015.19.4.018
  3. Kim, J. S., Shin, Y. S., and Kim, K. O. (2006), A Study on the proposal of Strength Presumption Equation of Concrete Using Admixture by Nondestructive Testing, Journal of the Korea Institute of Building Construction, 6(3), 59-66 (in Korean). https://doi.org/10.5345/JKIC.2006.6.3.059
  4. Lee, M. H., and Choi, C. W. (2004), A Study on the Minimum Number of Rebound Number Test and Pulse Velocity Method for Estimating Compressive Strength of Concrete. Journal of the Korea Concrete Institute, 16(6), 833-840 (in Korean). https://doi.org/10.4334/JKCI.2004.16.6.833
  5. Hong, S. U., Kim, J. H., Kim, S. H., and Lee, Y. T. (2017), A Study on the Evaluation of Compressive Strength of Concrete Hollow Column Members Using Ultrasonic Pulse Velocity Method, Journal of the Architectural Institute of Korea, 37(2), 727-727 (in Korean).
  6. Saha, A. K., Majhi, S., Sarker, P. K., Mukherjee, A., Siddika, A., Aslani, F., and Zhuge, Y. (2021), Non-destructive prediction of strength of concrete made by lightweight recycled aggregates and nickel slag, Journal of Building Engineering, 33, 101614.
  7. Hong, S. U., Lee, Y. T., Kim, S. H., and Kim, J. H. (2018), Estimation of Compressive Strength of Reinforced Concrete Vertical and Horizontal Members Using Ultrasonic Pulse Velocity Method, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(6), 197-205 (in Korean).
  8. Won, J. P., Park, S. K., and Ahn, T. S. (2000), A Study on the Concrete Strength Prediction by Ultrasonic Pulse Velocity Method. Jounal of Civil and Environmental Engineering, 1, 391-394 (in Korean).
  9. Shin, E. S., Lee, J. S., Park, S. H., and Han, S. H. (2014), Compressive Strength Estimation Technique of Underwater Concrete Structures using Both Rebound Hardness and Ultrasonic Pulse Velocity Values, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(4), 118-125 (in Korean). https://doi.org/10.11112/jksmi.2014.18.4.118
  10. Bogas, J. A., Gomes, M. G., and Gomes, A. (2013), Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method, Ultrasonics, 53(5), 962-972. https://doi.org/10.1016/j.ultras.2012.12.012
  11. Hong, S. U. and Cho, Y. S. (2011), A Study on the Estimation of the Compressive Strength of Concrete Structures using Ultrasonic Pulse Velocity Method and Rebound Hardness Method. Journal of the Architectural Institute, 27(1), 19-26 (in Korean).
  12. Kim, M. S., Baek, D. I., and Youm, C. S. (2007), A Study on the Strength Prediction of Crushed Sand Concrete by Ultra-sonic Velocity Method, Journal of the Korea Institute for Structural Maintenance and Inspection, 11(4), 71-78 (in Korean).
  13. KS F 2731 (2023), Testing Method for Velocity of Ultrasonic Pulses to Conclude Compressive Strength of Concrete, Korean Standard Institute, Korea.
  14. ASTM C597 (2023), Stadard Test Method for ultrasonic Pulse Velocuty Through Concrete, developed by subcommittee:C09.64, Book of Standards Volume : 04.02, ASTM, West Conshohocken, PA, USA.
  15. Kim, M. W., Oh, H. S., and Oh, K. C. (2016), Estimating the Compressive strength of High-Strength Concrete Using Surface Rebound Value and Ultrasonic Velocity, Magazine of the Korea Institute for Structural Maintenance and Inspection, 20(2), 1-9 (in Korean). https://doi.org/10.11112/jksmi.2016.20.2.001
  16. Qasrawi, H. Y., (2000), Concrete strength by combined nondestructive methods simply and reliably predicted, Cement and Concrete Research, 30(5), 739
  17. Roh, Y. G. (2001), A Study on Non-Destructive Testing Equation for Estimation of Compressive Strength of Concrete, Dankook University.
  18. Oh, C. H. (1987), A study on the Nondestructive Testing by the Ultrasonic Plus Velocity in Re-Mi-Con Manufactured at Seoul. Kyong-gi. Kang-Won Area. Journal of the Architectural Institute of Korea, 3(3), 143-148 (in Korean).
  19. KS F 2405 (2022), Test Method for compressive strength of concrete, Korean Standard Institute, Korea.