DOI QR코드

DOI QR Code

상온 분사 공정을 이용하여 제조한 고에너지 밀도 세라믹 유전체 커패시터

High Energy Density Dielectric Ceramics Capacitors by Aerosol Deposition

  • 송현석 (영남대학교 신소재공학부) ;
  • 이건 (영남대학교 신소재공학부) ;
  • 예지원 (영남대학교 신소재공학부) ;
  • 정지윤 (영남대학교 신소재공학부) ;
  • 정대용 (인하대학교 신소재공학부) ;
  • 류정호 (영남대학교 신소재공학부)
  • Hyunseok Song (School of Materials Science and Engineering, Yeungnam University) ;
  • Geon Lee (School of Materials Science and Engineering, Yeungnam University) ;
  • Jiwon Ye (School of Materials Science and Engineering, Yeungnam University) ;
  • Ji Yun Jung (School of Materials Science and Engineering, Yeungnam University) ;
  • Dae-Yong Jeong (Department of Materials Science and Engineering, Inha University) ;
  • Jungho Ryu (School of Materials Science and Engineering, Yeungnam University)
  • 투고 : 2023.12.28
  • 심사 : 2024.01.25
  • 발행 : 2024.03.01

초록

Dielectric ceramic capacitors present high output power density due to the fast energy charge and discharge nature of dielectric polarization. By forming dense ceramic films with nano-grains through the Aerosol Deposition (AD) process, dielectric ceramic capacitors can have high dielectric breakdown strength, high energy storage density, and leading to high power density. Dielectric capacitors fabricated by AD process are expected to meet the increasing demand in applications that require not only high energy density but also high power output in a short time. This article reviews the recent progress on the dielectric ceramic capacitors with improved energy storage properties through AD process, including energy storage capacitors based on both leadbased and lead-free dielectric ceramics.

키워드

과제정보

본 연구는 2023년도 한국연구재단의 지원을 받아 수행된 기초연구사업 연구임(NRF-2023R1A2C2005864, NRF-2021R1F1A1062334, RS-2023-00270825).

참고문헌

  1. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M. T. Lanagan, and H. Liu, Adv. Mater., 29, 1601727 (2017). doi: https://doi.org/10.1002/adma.201601727 
  2. F. Zhuo, U. R. Eckstein, N. H. Khansur, C. Dietz, D. Urushihara, T. Asaka, K. I. Kakimoto, K. G. Webber, X. Fang, and J. Rodel, J. Am. Ceram. Soc., 105, 4108 (2022). doi: https://doi.org/10.1111/jace.18377 
  3. K. Yao, S. Chen, M. Rahimabady, M. S. Mirshekarloo, S. Yu, F.E.H. Tay, T. Sritharan, and L. Lu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1968 (2011). doi: https://doi.org/10.1109/TUFFC.2011.2039 
  4. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q. M. Zhang, Science, 313, 334 (2006). doi: https://doi.org/10.1126/science.1127798 
  5. M. Peddigari, H. Palneedi, G. T. Hwang, and J. Ryu, J. Korean Ceram. Soc., 56, 1 (2019). doi: https://doi.org/10.4191/kcers.2019.56.1.02 
  6. H. Palneedi, M. Peddigari, G. T. Hwang, D. Y. Jeong, and J. Ryu, Adv. Funct. Mater., 28, 1803665 (2018). doi: https://doi.org/10.1002/adfm.201803665 
  7. Y. Matsubayashi and J. Akedo, Ceram. Int., 49, 21570 (2023). doi: https://doi.org/10.1016/j.ceramint.2023.03.293 
  8. M. Peddigari, J. H. Park, J. H. Han, C. K. Jeong, J. Jang, Y. Min, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, S. Y. Park, W. H. Yoon, D. S. Park, D. Y. Jeong, J. Ryu, K. J. Lee, and G. T. Hwang, ACS Energy Lett., 6, 1383 (2021). doi: https://doi.org/10.1021/acsenergylett.1c00170 
  9. D. Hanft, J. Exner, M. Schubert, T. Stocker, P. Fuierer, and R. Moos, J. Ceram. Sci. Technol., 6, 147 (2015). doi: https://doi.org/10.4416/JCST2015-00018 
  10. Y. Kim, C. W. Ahn, J. J. Choi, J. Ryu, J. W. Kim, W. H. Yoon, D. S. Park, S. Y. Yoon, B. Ma, and B. D. Hahn, Sci. Rep., 7, 6637 (2017). doi: https://doi.org/10.1038/s41598-017-06774-z 
  11. Z. Tang, J. Ge, H. Ni, B. Lu, X. G. Tang, S. G. Lu, M. Tang, and J. Gao, J. Alloys Compd., 757, 169 (2018). doi: https://doi.org/10.1016/j.jallcom.2018.05.072 
  12. L. Yang, X. Li, E. Allahyarov, P. L. Taylor, Q. M. Zhang, and L. Zhu, Polymer, 54, 1709 (2013). doi: https://doi.org/10.1016/j.polymer.2013.01.035 
  13. A. Kumar, J. Y. Yoon, A. Thakre, M. Peddigari, D. Y. Jeong, Y. M. Kong, and J. Ryu, J. Korean Ceram. Soc., 56, 412 (2019). doi: https://doi.org/10.4191/kcers.2019.56.4.10 
  14. C. A. Randall, Z. Fan, I. Reaney, L. Q. Chen, and S. Trolier-McKinstry, J. Am. Ceram. Soc., 104, 3775 (2021). doi: https://doi.org/10.1111/jace.17834 
  15. T. Tsurumi, K. Soejima, T.K.T. Kamiya, and M.D.M. Daimon, Jpn. J. Appl. Phys., 33, 1959 (1994). doi: https://doi.org/10.1143/JJAP.33.1959 
  16. Z. Raddaoui, S. E. Kossi, J. Dhahri, N. Abdelmoula, and K. Taibi, RSC Adv., 9, 2412 (2019) doi: https://doi.org/10.1039/c8ra08910h 
  17. L. L. Zhang and Y. N. Huang, Sci. Rep., 10, 5060 (2020). doi: https://doi.org/10.1038/s41598-020-61911-5 
  18. A. Kumar, S. H. Kim, M. Peddigari, D. H. Jeong, G. T. Hwang, and J. Ryu, Electron. Mater. Lett., 15, 323 (2019). doi: https://doi.org/10.1007/s13391-019-00124-z 
  19. L. E. Cross, Ferroelectrics, 151, 305 (1994). doi: https://doi.org/10.1080/00150199408244755
  20. L. E. Cross, Ferroelectrics, 76, 241 (1987). doi: https://doi.org/10.1080/00150198708016945 
  21. A. A. Bokov and Z. G. Ye, J. Mater. Sci., 41, 31 (2006). doi: https://doi.org/10.1007/s10853-005-5915-7 
  22. R. A. Cowley, S. N. Gvasaliya, S. G. Lushnikov, B. Roessli, and G. M. Rotaru, Adv. Phys., 60, 229 (2011). doi: https://doi.org/10.1080/00018732.2011.555385 
  23. H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y. J. Zhang, L. Li, Y. Shen, Y. H. Lin, and C. W. Nan, Nat. Commun., 9, 1813 (2018). doi: https://doi.org/10.1038/s41467-018-04189-6 
  24. Y. Goh, B. H. Kim, H. Bae, and D. K. Kwon, J. Korean Ceram. Soc., 53, 178 (2016) doi: https://doi.org/10.4191/kcers.2016.53.2.178 
  25. S. S. Lee, C. H. Lee, T. A. Duong, H.T.K. Nguyen, H. S. Han, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 1 (2021). doi: https://doi.org/10.4313/JKEM.2021.34.1.1 
  26. M. Peddigari, H. Palneedi, G. T. Hwang, K. W. Lim, G. Y. Kim, D. Y. Jeong, and J. Ryu, ACS Appl. Mater. Interfaces, 10, 20720 (2018). doi: https://doi.org/10.1021/acsami.8b05347 
  27. B. Li, Q. X. Liu, X. G. Tang, T. F. Zhang, Y. P. Jiang, W. H. Li, and J. Luo, RSC Adv., 7, 43327 (2017). doi: https://doi.org/10.1039/c7ra08621k 
  28. L. Chen, N. Sun, Y. Li, Q. Zhang, L. Zhang, and X. Hao, J. Am. Ceram. Soc., 101, 2313 (2018). doi: https://doi.org/10.1111/jace.15380 
  29. T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, and Z. Xu, J. Mater. Chem. A, 5, 554 (2017). doi: https://doi.org/10.1039/c6ta07803f 
  30. M. Peddigari, B. Wang, R. Wang, W. H. Yoon, J. Jang, H. Lee, K. Song, G. T. Hwang, K. Wang, Y. Hou, H. Palneedi, Y. Yan, H. S. Choi, J. Wang, A. Talluri, L. Q. Chen, S. Priya, D. Y. Jeong, and J. Ryu, Adv. Mat., 35, 2302554 (2023). doi: https://doi.org/10.1002/adma.202302554 
  31. Y. J. Yun and S. M. Nam, Ceramist, 12, 22 (2009). 
  32. J. Exner, T. Nazarenus, D. Hanft, J. Kita, and R. Moos, Adv. Mater., 32, 1908104 (2020). doi: https://doi.org/10.1002/adma.201908104 
  33. J. Akedo, J. Therm. Spray Technol., 17, 181 (2008). doi: https://doi.org/10.1007/s11666-008-9163-7 
  34. M. W. Lee, J. J. Park, D. Y. Kim, S. S. Yoon, H. Y. Kim, D. H. Kim, S. C. James, S. Chandra, T. Coyle, J. H. Ryu, W. H. Yoon, and D. S. Park, J. Aerosol Sci., 42, 771 (2011). doi: https://doi.org/10.1016/j.jaerosci.2011.07.006 
  35. J. J. Park, M. W. Lee, S. S. Yoon, H. Y. Kim, S. C. James, S. D. Heister, S. Chandra, W. H. Yoon, D. S. Park, and J. Ryu, J. Therm. Spray Technol., 20, 514 (2011). doi: https://doi.org/10.1007/s11666-010-9542-8 
  36. C. Lee, M. Y. Cho, M. Kim, J. Jang, Y. Oh, K. Oh, S. Kim, B. Park, B. Kim, S. M. Koo, J. M. Oh, and D. Lee, Sci. Rep., 9, 2166 (2019). doi: https://doi.org/10.1038/s41598-019-38477-y 
  37. M. Sadl, A. Lebar, J. Valentincic, and H. Ursic, ACS Appl. Energy Mater., 5, 6896 (2022). doi: https://doi.org/10.1021/acsaem.2c00518 
  38. C. K. Park, S. H. Lee, J. H. Lim, J. Ryu, D. H. Choi, and D. Y. Jeong, Ceram. Int., 44, 20111 (2018). doi: https://doi.org/10.1016/j.ceramint.2018.07.303 
  39. M. Sadl, U. Prah, V. Kovacova, E. Defay, T. Rojac, A. Lebar, J. Valentincic, and H. Ursic, J. Mater. Chem. C, 11, 10058 (2023). doi: https://doi.org/10.1039/d3tc01555f 
  40. M. Sadl, K. Nadaud, M. Bah, F. Levassort, U. Eckstein, N. H. Khansur, K. G. Webber, and H. Ursic, J. Phys.: Energy, 4, 024004 (2022). doi: https://doi.org/10.1088/2515-7655/ac5fd5 
  41. H. B. Jung, J. H. Lim, M. Peddigari, J. Ryu, D. H. Choi, and D. Y. Jeong, J. Eur. Ceram. Soc., 40, 63 (2020). doi: https://doi.org/10.1016/j.jeurceramsoc.2019.09.011 
  42. S. B. Kang, M. G. Choi, D. Y. Jeong, Y. M. Kong, and J. Ryu, IEEE Trans. Dielectr. Electr. Insul., 22, 1477 (2015). doi: https://doi.org/10.1109/tdei.2015.7116340 
  43. A. Kumar, G. Lee, Y. G. Chae, A. Thakre, H. S. Choi, G. H. Nam, and J. Ryu, Ceram. Int., 47, 31590 (2021). doi: https://doi.org/10.1016/j.ceramint.2021.08.039 
  44. A. Kumar, A. Kumar, M.M.S. Cabral-Pinto, A. K. Chaturvedi, A. A. Shabnam, G. Subrahmanyam, R. Mondal, D. K. Gupta, S. K. Malyan, S. S. Kumar, S. A. Khan, and K. K. Yadav, Int. J. Environ. Res. Public Health, 17, 2179 (2020). doi: https://doi.org/10.3390/ijerph17072179 
  45. X. Zeng, J. Li, A. L. N. Stevels, and L. Liu, J Clean Prod, 51, 80 (2013). doi: https://doi.org/10.1016/j.jclepro.2012.09.030 
  46. M. K. Kim, S. Y. Ji, J. H. Lim, S. W. Kim, and D. Y. Jeong, J. Asian Ceram. Soc., 10, 196 (2022). doi: https://doi.org/10.1080/21870764.2022.2031807 
  47. J. S. Lee, S. Yoon, J. H. Lim, C. K. Park, J. Ryu, and D. Y. Jeong, Korean J. Mater. Res., 29, 73 (2019). doi: https://doi.org/10.3740/MRSK.2019.29.2.73 
  48. J. H. Lim, J. W. Kim, S. H. Lee, C. K. Park, J. Ryu, D. H. Choi, and D. Y. Jeong, Korean J. Mater. Res., 29, 175 (2019). doi: https://doi.org/10.3740/MRSK.2019.29.3.175 
  49. M. Sadl, O. Condurache, A. Bencan, M. Dragomir, U. Prah, B. Malic, M. Deluca, U. Eckstein, D. Hausmann, N. H. Khansur, K. G. Webber, and H. Ursic, Acta Mater., 221, 117403 (2021). doi: https://doi.org/10.1016/j.actamat.2021.117403