References
- Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043
- Al-shujairi, M. and Mollamahmutoglu, C . (2018), "Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect", Compos. Struct., 201, 1018-1030. https://doi.org/10.1016/j.compstruct.2018.06.035
- Alijani, F. and Amabili, M. (2014), "Effect of thickness deformation on large-amplitude vibrations of functionally graded rectangular plates", Compos. Struct, 113, 89-107. https://doi.org/10.1016/j.compstruct.2014.03.006
- Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, U.K.
- Arefi, M. and Amabili, M. (2021), "A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory", Compos. Struct, 257, 113100. https://doi.org/10.1016/j.compstruct.2020.113100
- Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E, 41(5), 861-864. https://doi.org/10.1016/j.physe.2009.01.007
- Aydogdu, M. (2015), "A nonlocal rod model for axial vibration of double-walled carbon nanotubes including axial van der Waals force effects", J. Vib. Cont. 21(16), 3132-3154. https://doi.org/10.1177/1077546313518954
- Benatta, M.A., Mechab, I., Tounsi, A. and Bedia, E.A. (2008), "Static analysis of functionally graded short beams including warping and shear deformation effects", Comput. Mater. Sci, 44(2), 765-773. https://doi.org/10.1016/j.commatsci.2008.05.020
- Cao, D., Gao, Y., Yao, M. and Zhang, W. (2018), "Free vibration of axially functionally graded beams using the asymptotic development method", Eng. Struct., 173, 442-448. doi.org/10.1016/j.engstruct.2018.06.111
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J. N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025
- Civalek, O . (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct, 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983) "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci. 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Fariborz, S. (2012), "Free vibration of a rod undergoing finite strain", J. Phys. Conference Series, 382(1).
- Faroughi, S. and Goushegir, S.M.H. (2016), "Analysis of axial vibration of non-uniform nanorod using boundary characteristic orthogonal polynomials", Modares Mech. Eng., 16(1), 203-212.
- Fernandes, R., El-Borgi, S., Mousavi, S.M., Reddy, J.N. and Mechmoum, A. (2017), "Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium", Physica E Low Dimens, 88, 18-25. https://doi.org/10.1016/j.physe.2016.11.007
- Gad-el-Hak, M. (1996), "Compliant coatings: a decade of progress", Appl. Mech. Rev, 49(10S), S147-S157. https://doi.org/10.1115/1.3101966
- Gheshlaghi, B. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos Part B Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026
- Guven, U. (2014), "Love-Bishop rod solution based on strain gradient elasticity theory", Comptes Rendus Mecanique, 342(1), 8-16. https://doi.org/10.1016/j.crme.2013.10.011
- Hernandez-Acosta, M.A., Martinez-Gutierrez, H., Martinez-Gonzalez, C.L., Torres-SanMiguel, C.R., Trejo-Valdez, M. and Torres-Torres, C. (2018), "Fractional and chaotic electrical signatures exhibited by random carbon nanotube networks", Phys. Scr., 93(12), 125801. https://doi.org/10.1088/1402-4896/aaec46
- Hosseini-Hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. (2014), "Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity", Acta Mech, 225(6), 1555-1564. https://doi.org/10.1007/s00707-013-1014-z
- Hsu, J.C., Lee, H.L. and Chang, W.J. (2011), "Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory", Curr. Appl. Phys., 11(6), 1384-1388. https://doi.org/10.1016/j.cap.2011.04.026
- Jing, L.L., Ming, P.J., Zhang, W.P., Fu, L.R. and Cao, Y.P. (2016), "Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method", Compos. Struct., 138, 192-213. https://doi.org/10.1016/j.compstruct.2015.11.027
- Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Modell., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
- Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems", Eur. J. Mech A Solids, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005
- Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. https://doi.org/10.1080/15376490902781175
- Kiani, K. (2010), "Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique", Physica E. 43(1), 387-397. https://doi.org/10.1016/j.physe.2010.08.022
- Kumar, R., Dutta, S.C. and Panda, S.K. (2016), "Linear and non-linear dynamic instability of functionally graded plate subjected to non-uniform loading", Compos. Struct, 154, 219-230. https://doi.org/10.1016/j.compstruct.2016.07.050
- Li, C., Li, S., Yao, L. and Zhu, Z. (2015), "Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models", Appl. Math. Model., 39(15), 4570-4585. https://doi.org/10.1016/j.apm.2015.01.013
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Li, X.F., Shen, Z.B. and Lee, K.Y. (2017), "Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia", ZAMM J. Appl. Math. Mech., 97(5), 602-616. https://doi.org/10.1002/zamm.201500186
- Liu, H., Lv, Z. and Wu, H. (2019), "Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory", Compos Struct, 214, 47-61. https://doi.org/10.1016/j.compstruct.2019.01.090
- Malekzadeh, P. and Karami, G. (2005), "Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates", Eng. Struct, 27(10), 1563-1574. https://doi.org/10.1016/j.engstruct.2005.03.017
- Mashat, D.S., Carrera, E., Zenkour, A.M., Al Khateeb, S.A. and Filippi, M. (2014), "Free vibration of FGM layered beams by various theories and finite elements", Compos. Part B Eng., 59, 269-278. https://doi.org/10.1016/j.compositesb.2013.12.008
- Mohammadian, M. and Hosseini, S. M. (2022), "A size-dependent differential quadrature element model for vibration analysis of FG CNT reinforced composite microrods based on the higher order Love-Bishop rod model and the nonlocal strain gradient theory", Eng Anal Bound Elem, 138, 235-252. https://doi.org/10.1016/j.enganabound.2022.02.017
- Murmu, T. and Adhikari, S. (2010), "Nonlocal effects in the longitudinal vibration of double-nanorod systems", Physica E, 43(1), 415-422. https://doi.org/10.1016/j.physe.2010.08.023
- Murmu, T., Adhikari, S. and McCarthy, M.A. (2014), "Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory", J. Comput. Theor. Nanosci., 11(5), 1230-1236. https://doi.org/10.1166/jctn.2014.3487
- Narendar, S. and Gopalakrishnan, S. (2011), "Axial wave propagation in coupled nanorod system with nonlocal small-scale effects", Compos Part B Eng., 42(7), 2013-2023. https://doi.org/10.1016/j.compositesb.2011.05.021
- Nayfeh, A.H. and Nayfeh, S.A. (1994), "On nonlinear modes of continuous systems", J. Vib. Acoust., 116(1), 129-136. https://doi.org/10.1115/1.2930388
- Nazemnezhad, R. and Kamali, K. (2018), "Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory", Steel. Compos. Struct., 28(6), 749-758. https://doi.org/10.12989/scs.2018.28.6.749
- Noroozi, M. and Ghadiri, M. (2021), "Nonlinear vibration and stability analysis of a size-dependent viscoelastic cantilever nanobeam with axial excitation", Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 235(18), 3624-3640. https://doi.org/10.1177/0954406220959104
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh- Ritz method", Compos. Part B Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
- Qing, H. and Wei, L. (2022), "Linear and nonlinear free vibration analysis of functionally graded porous nanobeam using stress-driven nonlocal integral model", Commun. Nonlinear Sci. Numer. Simul., 109, 106300. https://doi.org/10.1016/j.cnsns.2022.106300
- Rao, S.S. (2007), Vibration of Continuous Systems, 464, Wiley, New York, U.S.A.
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol, 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Shakhlavi, S.J. (2023a), "On nonlinear damping effects with nonlinear temperature-dependent properties for an axial thermo-viscoelastic rod", Int. J. Non Linear Mech, 153, 104418. https://doi.org/10.1016/j.ijnonlinmec.2023.104418
- Shakhlavi, S.J. (2023b), "Nonlinear nonlocal damping effects under magnetic loads of a ferromagnetic-viscoelastic nanotube exposed to a nonlinear elastic medium with nonlocal viscosity", Commun. Nonlinear Sci. Numer. Simul., 107690. https://doi.org/10.1016/j.cnsns.2023.107690
- Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2020), "Torsional vibrations investigation of nonlinear nonlocal behaviour in terms of functionally graded nanotubes", Int. J. Non Linear Mech, 103513. https://doi.org/10.1016/j.ijnonlinmec.2020.103513
- Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2022a), "Thermal stress effects on size-dependent nonlinear axial vibrations of nanorods exposed to magnetic fields surrounded by nonlinear elastic medium", J. Therm. Stress, 45(2), 139-153. https://doi.org/10.1080/01495739.2021.2003275
- Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2022b), "Nonlinear nano-rod-type analysis of internal resonances and geometrically considering nonlocal and inertial effects in terms of Rayleigh axial vibrations", Eur. Phys. J. Plus, 137(4), 1-20. https://doi.org/10.1140/epjp/s13360-022-02594-x
- Shakhlavi, S.J., Nazemnezhad, R. and Hosseini-Hashemi, S. (2020), "On nonlinear torsional vibrations of nanorod", In 28th Annual Conf of Mechanical Engineering, Tehran.
- Shakhlavi, S.J., Nazemnezhad, R., Hosseini-Hashemi, S. and Amabili, M. (2021a), "Analysis of nonlinear nonlocal axial free vibrations of gold nanoscale rod", In 29th Annual International Conference of Iranian Association of Mechanical Engineers and 8th International Conference on Thermal Power Plants Industry, Tehran.
- Shakhlavi, S.J., Nazemnezhad, R., Hosseini-Hashemi, S. and Amabili, M. (2021b), "On nonlocal nonlinear internal resonances of gold nanoscale rod", In 10th International Conference on Acoustics and Vibration, Tehran.
- Simsek, M. (2009), "Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method", Int. J. Eng. Appl. Sci., 1(3), 1-11. https://dergipark.org.tr/en/pub/ijeas/issue/23571/251092 1092
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
- Striz, A.G., Wang, X. and Bert, C.W. (1995), "Harmonic differential quadrature method and applications to analysis of structural components", Acta Mech., 111(1), 85-94. https://doi.org/10.1007/BF01187729
- Su, H. and Banerjee, J.R. (2015), "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", Comput. Struct, 147, 107-116. https://doi.org/10.1016/j.compstruc.2014.10.001
- Thai, H.T. and VO, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci, 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
- Trinh, L.C., VO, T.P., Osofero, A.I. and Lee, J. (2016), "Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach", Compos. Struct., 156, 263-275. https://doi.org/10.1016/j.compstruct.2015.11.010
- Yadav, A., Amabili, M., Panda, S.K. and Dey, T. (2019), "Non-linear vibration response of functionally graded circular cylindrical shells subjected to thermo-mechanical loading", Compos. Struct, 229, 111430. https://doi.org/10.1016/j.compstruct.2019.111430
- Yang, J. and Shen, H. S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound. Vib., 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161
- Yang, Y., Lam, C.C., Kou, K.P. and IU, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct, 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016
- Yapanmis, B.E. and Bagdatli, S.M. (2022), "Investigation of the non-linear vibration behaviour and 3: 1 internal resonance of the multi supported nanobeam", Z Naturforsch A, 77(4), 305-321. https://doi.org/10.1515/zna-2021-0300
- Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel. Compos. Struct., 37(5), 551-569. https://doi.org/10.12989/scs.2020.37.5.551
- Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol, 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023
- Zhu, X. and Li, L. (2017), "On longitudinal dynamics of nanorods", Int. J. Eng. Sci., 120, 129-145. https://doi.org/10.1016/j.ijengsci.2017.08.003