DOI QR코드

DOI QR Code

Efficiency optimization control of permanent magnet synchronous motors for pure electric vehicles based on GBDT

  • Fang Xie (School of Electrical Engineering and Automation, Anhui University) ;
  • Houying Wang (School of Electrical Engineering and Automation, Anhui University) ;
  • Shilin Ni (School of Electrical Engineering and Automation, Anhui University) ;
  • Chaochen An (School of Electrical Engineering and Automation, Anhui University)
  • Received : 2023.06.12
  • Accepted : 2023.10.17
  • Published : 2024.02.20

Abstract

In this paper, "Machine learning" is introduced to motor efficiency optimization control to improve the operating efficiency of the permanent magnet synchronous motors (PMSMs) for pure electric vehicles. A current distribution method based on the gradient boosting decision tree (GBDT) is proposed. The efficiency of the motor operation can be improved by coordinating the current control. First, a mathematical model of the motor efficiency is established, and the current distribution law of the optimal efficiency of the motor in different operating regions is qualitatively analyzed. The control system is based on this current distribution. Second, the sample space is established based on measured data, where the current regression model of the GBDT is introduced. Then by analyzing the importance of characteristic variables, the structure of the model is optimized, and the input and output of the model are reasonably selected, which are embedded into the control system to realize the coordinated control of the current. Finally, comparative experiment shows that the proposed method can improve the efficiency of PMSMs in the whole speed range.

Keywords

Acknowledgement

This work was supported by Natural Science Foundation of Anhui Province (2108085ME179), National Natural Science Foundation of China (51607002), Key project of National Natural Science funds (51637001).

References

  1. Yamazaki, K., Nakatani, Y.: Effects of reaction field caused by eddy currents and hysteresis phenomenon in laminated cores on torque characteristics of interior permanent magnet synchronous motors. IEEE Trans. Magn. (2023). https://doi.org/10.1109/TMAG.2023
  2. Noguchi, T.: Trends of permanent magnet synchronous machine drives. IEEJ Trans. Electr. Electron. Eng. 2(2), 125-142 (2007) https://doi.org/10.1002/tee.20119
  3. Yamauchi, K., Sanada, M., Morimoto, S., Inoue, Y.: Design IPMSM structures for enlarging high-efficiency operation area using automatic design system with new algorithm. In: 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), pp. 23-28 (2020)
  4. Jung, H., Park, G., Kim, D., Jung, S.: Optimal design and validation of IPMSM for maximum efficiency distribution compatible to energy consumption areas of HD-EV. IEEE Trans. Magn. 53(6), 1-4 (2017) https://doi.org/10.1109/TMAG.2017.2660524
  5. Du, J., Wang, X., Lv, H.: Optimization of magnet shape based on efficiency map of IPMSM for EVs. IEEE Trans. Appl. Supercond. 26(7), 1-7 (2016) https://doi.org/10.1109/TASC.2016.2594834
  6. Nihonyanagi, Takemoto, M., Ogasawara, S., Aoki, N., Lee, K.: Examination to enhance efficiency of V-shaped IPMSM using concentrated winding structure at high speed and high torque area. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1-6 (2016)
  7. Sun, X., Li, T., Yao, M., Lei, G., Guo, Y., Zhu, J.: Improved finite-control-set model predictive control with virtual vectors for PMSHM drives. IEEE Trans. Energy Convers. 37(3), 1885-1894 (2022). https://doi.org/10.1109/TEC.2021.3138905
  8. Sun, X., Zhang, Y., Cai, Y., Tian, X.: Compensated deadbeat predictive current control considering disturbance and VSI nonlinearity for in-wheel PMSMs. IEEE/ASME Trans. Mechatron. 27(5), 3536-3547 (2022). https://doi.org/10.1109/TMECH.2021.3135936
  9. Lee, J., Nam, K., Choi, S., Kwon, S.: Loss-minimizing control of PMSM with the use of polynomial approximations. IEEE Trans. Power Electron. 24(4), 1071-1082 (2009) https://doi.org/10.1109/TPEL.2008.2010518
  10. Xiao, X., et al.: Improved loss minimization control based on time-harmonic equivalent circuit for linear induction motors adopted to linear metro. IEEE Trans. Veh. Technol. (2023). https://doi.org/10.1109/TVT.2023.3244602
  11. Mademlis, C., Kioskeridis, I., Margaris, N.: Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives. IEEE Trans. Energy Convers. 19(4), 715-723 (2004) https://doi.org/10.1109/TEC.2004.837282
  12. Mademlis, C., Margaris, N.: Loss minimization in vector-controlled interior permanent-magnet synchronous motor drives. IEEE Trans. Ind. Electron. 49(6), 1344-1347 (2002) https://doi.org/10.1109/TIE.2002.804990
  13. Tong, X., Zhang, X.: An efficiency optimization method for direct torque control system of built-in permanent magnet synchronous motor. Electr. Mach. Control Appl. 45(11), 15-20 (2018)
  14. Li, M., Zhou, Z., Huang, S.: Direct torque control for induction motor with efficiency optimization based on feedforward compensation. China Mech. Eng. 26(20), 2806-2810 (2015)
  15. Nasir Uddin, M., Chy, M.I.: A novel fuzzy logic controller based torque and flux controls of IPM synchronous motor. IEEE Trans. Ind. Appl. 46(3), 1220-1229 (2010) https://doi.org/10.1109/TIA.2010.2045334
  16. Kong, X., Cheng, M., Hua, W., Zhao, W., Yagang, S.: Efficiency optimization of a novel stator double feeding double sexter motor using extreme learning machine. Proc. CSEE 29(06), 80-85 (2009)
  17. Uddin, M.N.: An adaptive filter based torque ripple minimization of fuzzy logic controller for speed control of a PM synchronous motor. IEEE Trans. Ind. Appl. 47(1), 350-358 (2011) https://doi.org/10.1109/TIA.2010.2090316
  18. Huang, L., Ji, J., Zhao, W., Tang, H., Tao, T., Jin, S.: Direct torque control for dual three-phase permanent magnet motor with improved torque and flux. IEEE Trans. Energy Convers. 37(4), 2385-2397 (2022). https://doi.org/10.1109/TEC.2022.3171073
  19. Nasir Uddin, M., Khastoo, J.: Fuzzy logic-based efficiency optimization and high dynamic performance of IPMSM drive system in both transient and steady-state conditions. IEEE Trans. Ind. Appl. 50(6), 4251-4259 (2014) https://doi.org/10.1109/TIA.2014.2317845
  20. Zhang, L., Wen, X., Zheng, Q.: Research on hybrid fuzzy search efficiency optimization control for induction motor. Proc. CSEE 27(27), 83-87 (2007)
  21. Gao, F., Gao, X.: Hyper-spherical search optimized fuzzy logic control considering operating conditions for hybrid tram. IEEE Access 10, 65925-65935 (2022). https://doi.org/10.1109/ACCESS.2022.3183643
  22. Ren, J., Li, Y., Wang, K.: Efficiency optimization control of linear induction motor based on online search method. Trans. China Electrotech. Soc. 24(05), 34-39 (2009)
  23. Pang, C., Jianming, Yu., Zhang, Bo., Liu, Y.: Analysis of power load influencing factors based on gradient lifting tree and nonlinearity. Power Syst. Prot. Control 48(24), 71-78 (2020)
  24. Lai, C., Li, J., Chen, B., Huang, Y., Wei, S.: A review of photovoltaic power generation output prediction technology. Trans. China Electrotech. Soc. 34(06), 1201-1217 (2019)
  25. Lee, G.: Exploring predictive variables affecting the sales of companies listed with Korean stock indices through machine learning analysis. IEEE Access 11, 63534-63549 (2023). https://doi.org/10.1109/ACCESS.2023.3288576
  26. Tuan, T.A., Pha, P.D., Tam, T.T., Bui, D.T.: A new approach based on balancing composite motion optimization and deep neural networks for spatial prediction of landslides at tropical cyclone areas. IEEE Access 11, 69495-69511 (2023). https://doi.org/10.1109/ACCESS.2023.3291411
  27. Li, T., Sun, X., Lei, G., Guo, Y., Yang, Z., Zhu, J.: Finite-control set model predictive control of permanent magnet synchronous motor drive systems-an overview. IEEE/CAA J. Autom. Sin. 9(12), 2087-2105 (2022). https://doi.org/10.1109/JAS.2022.105851
  28. Zhu, Q., Dang, J., Chen, J., Youping, Xu., Li, Y., Duan, X.: Power system transient stability assessment method based on deep confidence network. Proc. CSEE 38(04), 735-743 (2018)
  29. Ni, R., Xu, D., Wang, G., Ding, L., Zhang, G., Qu, L.: Maximum efficiency per ampere control of permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 62(4), 2135-2143 (2015) https://doi.org/10.1109/TIE.2014.2354238
  30. Liu, X., Xie, S., Zheng, L.: Research on an improved maximum efficiency control technology for induction motor. Proc. CSEE 25(06), 98-101 (2005)