DOI QR코드

DOI QR Code

Cascaded controllable source circuit and control of electromagnetic transmitters for deep sea exploration

  • Haijun Tao (College of Electrical Engineering and Automation, Henan Polytechnic University) ;
  • Naitong Yang (College of Electrical Engineering and Automation, Henan Polytechnic University) ;
  • Hongyi Wang (College of Electrical Engineering and Automation, Henan Polytechnic University)
  • Received : 2023.03.29
  • Accepted : 2023.10.29
  • Published : 2024.02.20

Abstract

The electromagnetic detection method is the main method of marine oil and gas resource exploration, and the marine electromagnetic transmitter is the key equipment of marine electromagnetic detection systems. At present, the power factor of the controllable source circuit of the electromagnetic transmitter is low, energy cannot be fed back, and the capacitance of the filter capacitor is large, which results in a large volume of the electromagnetic transmitter and high maintenance costs. Thus, a cascaded H-bridge controllable source circuit combined with active power decoupling technology is introduced in this paper. First, the topological structure and working principle of the controllable source circuit of the electromagnetic transmitter are analyzed, and an improvement plan is proposed for the existing problems of the controllable source circuit. Second, the working principle of the improved controllable source circuit is analyzed, and the advantages of the improved scheme are expounded. Then a control strategy based on linear active disturbance rejection control (ADRC) is proposed, and a linear ADRC controller is designed. Simulation results show that the improved controllable source circuit reduces the capacitance value, improves the power factor, reduces the volume of the underwater towing body, and reduces the maintenance cost of the system. The proposed control strategy makes the DC voltage have better anti-disturbance performance, and improves the reliability of the electromagnetic transmitter in deep sea exploration.

Keywords

Acknowledgement

This work is supported by the project of 'Science and Technology Project of Henan Province (222102220014)' and 'Funded by the special funds for basic scientific research business expenses of colleges and universities in Henan Province (NSFRF210409)'

References

  1. Di, Q., Zhu, R., Xue, G., et al.: New development of the Electromagnetic methods for deep exploration. Proc. Chin. J. Geophys. 62(06), 2128-2138 (2019)
  2. Schwalenberg, K., Rippe, D., Koch, S., et al.: Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. J. Geophys. Res. Solid Earth. 122(5), 3334-3350 (2017) https://doi.org/10.1002/2016JB013702
  3. Yu, F., Zhang, Y.: Modeling and control method for high-power electromagnetic transmitter power supplies. J. Power Electron. 13(4), 679-691 (2013) https://doi.org/10.6113/JPE.2013.13.4.679
  4. Song, H., Zhang, Y., Gao, J., et al.: Clamping-diode circuit for marine controlled-source electromagnetic transmitters. J. Power Electronics. 18(2), 395-406 (2018)
  5. Constable, S., Srnka, L.J.: Marine controlled-source electromagnetic methods-an introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics. 72(2), WA3-WA12 (2007) https://doi.org/10.1190/1.2432483
  6. Tao, H.-J., Zhang, Y.-M., Ren, X.-G.: Characteristics analysis of high power marine electromagnetic transmitter DC-DC controlled source circuit. Trans. China Electrotech. Soc. 32(16), 233-244 (2017)
  7. Perez, M.A., Ceballos, S., Konstantinou, G., et al.: Modular multilevel converters: recent achievements and challenges. IEEE Open J. Indus. Electr. Soc. 2, 224-239 (2021) https://doi.org/10.1109/OJIES.2021.3060791
  8. Fang, J., Blaabjerg, F., Liu, S., et al.: A review of multilevel converters with parallel connectivity. IEEE Trans. Power Electron. 36(11), 12468-12489 (2021) https://doi.org/10.1109/TPEL.2021.3075211
  9. Wang, S., Jiao, N., Ma, J., et al.: Analysis and optimization of voltage balancing control limits for cascaded H-bridge rectifiers. IEEE Trans. Industr. Electron. 68(11), 10677-10687 (2020) https://doi.org/10.1109/TIE.2020.3032874
  10. Jia, G., Chen, M., Tang, S., et al.: Active power decoupling for a modified modular multilevel converter to decrease submodule capacitor voltage ripples and power losses. IEEE Trans. Power Electron. 36(3), 2835-2851 (2020)
  11. Serban, I.: Power decoupling method for single-phase H-bridge inverters with no additional power electronics. IEEE Trans. Industr. Electron. 62(8), 4805-4813 (2015) https://doi.org/10.1109/TIE.2015.2399274
  12. Tang, Y., Qin, Z., Blaabjerg, F., et al.: A dual voltage control strategy for single-phase PWM converters with power decoupling function. IEEE Trans. Power Electron. 30(12), 7060-7071 (2014)
  13. Zhang, B., Tan, W., Li, J.: Tuning of linear active disturbance rejection controller with robustness specification. ISA Trans. 85, 237-246 (2019) https://doi.org/10.1016/j.isatra.2018.10.018
  14. Tao, H., Zhang, Y., Ren, X.: Small-signal modeling of marine electromagnetic detection transmitter controlled-source circuit. Math. Prob. Eng. 2015, 1-9 (2015)
  15. Tao, H., Du, C., Zhang, G., et al.: Dual-mode control strategy based on DC-bus voltage for dual-active bridge converter in marine electromagnetic transmitter system. J. Power Electronics. 22, 351-362 (2022) https://doi.org/10.1007/s43236-021-00337-2
  16. Wang, Z.A., Liu, J.J.: Power electronics technology. Machinery Industry Press, Beijing (2017)
  17. Hu, H., Harb, S., Kutkut, N., et al.: A review of power decoupling techniques for microinverters with three different decoupling capacitor locations in PV systems. IEEE Trans. Power Electron. 28(6), 2711-2726 (2013) https://doi.org/10.1109/TPEL.2012.2221482
  18. Gao, Z.: Scaling and bandwidth-parameterization based controller tuning. Proc. Am. Control Confer. 6, 4989-4996 (2006)
  19. Liu, H., Liu, H., Shan, X.: Linear active disturbance rejection control with torque compensation for electric load simulator. J. Power Electronics. 21, 195-203 (2021) https://doi.org/10.1007/s43236-020-00168-7