Acknowledgement
This work is supported by the project of 'Science and Technology Project of Henan Province (222102220014)' and 'Funded by the special funds for basic scientific research business expenses of colleges and universities in Henan Province (NSFRF210409)'
References
- Di, Q., Zhu, R., Xue, G., et al.: New development of the Electromagnetic methods for deep exploration. Proc. Chin. J. Geophys. 62(06), 2128-2138 (2019)
- Schwalenberg, K., Rippe, D., Koch, S., et al.: Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. J. Geophys. Res. Solid Earth. 122(5), 3334-3350 (2017) https://doi.org/10.1002/2016JB013702
- Yu, F., Zhang, Y.: Modeling and control method for high-power electromagnetic transmitter power supplies. J. Power Electron. 13(4), 679-691 (2013) https://doi.org/10.6113/JPE.2013.13.4.679
- Song, H., Zhang, Y., Gao, J., et al.: Clamping-diode circuit for marine controlled-source electromagnetic transmitters. J. Power Electronics. 18(2), 395-406 (2018)
- Constable, S., Srnka, L.J.: Marine controlled-source electromagnetic methods-an introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics. 72(2), WA3-WA12 (2007) https://doi.org/10.1190/1.2432483
- Tao, H.-J., Zhang, Y.-M., Ren, X.-G.: Characteristics analysis of high power marine electromagnetic transmitter DC-DC controlled source circuit. Trans. China Electrotech. Soc. 32(16), 233-244 (2017)
- Perez, M.A., Ceballos, S., Konstantinou, G., et al.: Modular multilevel converters: recent achievements and challenges. IEEE Open J. Indus. Electr. Soc. 2, 224-239 (2021) https://doi.org/10.1109/OJIES.2021.3060791
- Fang, J., Blaabjerg, F., Liu, S., et al.: A review of multilevel converters with parallel connectivity. IEEE Trans. Power Electron. 36(11), 12468-12489 (2021) https://doi.org/10.1109/TPEL.2021.3075211
- Wang, S., Jiao, N., Ma, J., et al.: Analysis and optimization of voltage balancing control limits for cascaded H-bridge rectifiers. IEEE Trans. Industr. Electron. 68(11), 10677-10687 (2020) https://doi.org/10.1109/TIE.2020.3032874
- Jia, G., Chen, M., Tang, S., et al.: Active power decoupling for a modified modular multilevel converter to decrease submodule capacitor voltage ripples and power losses. IEEE Trans. Power Electron. 36(3), 2835-2851 (2020)
- Serban, I.: Power decoupling method for single-phase H-bridge inverters with no additional power electronics. IEEE Trans. Industr. Electron. 62(8), 4805-4813 (2015) https://doi.org/10.1109/TIE.2015.2399274
- Tang, Y., Qin, Z., Blaabjerg, F., et al.: A dual voltage control strategy for single-phase PWM converters with power decoupling function. IEEE Trans. Power Electron. 30(12), 7060-7071 (2014)
- Zhang, B., Tan, W., Li, J.: Tuning of linear active disturbance rejection controller with robustness specification. ISA Trans. 85, 237-246 (2019) https://doi.org/10.1016/j.isatra.2018.10.018
- Tao, H., Zhang, Y., Ren, X.: Small-signal modeling of marine electromagnetic detection transmitter controlled-source circuit. Math. Prob. Eng. 2015, 1-9 (2015)
- Tao, H., Du, C., Zhang, G., et al.: Dual-mode control strategy based on DC-bus voltage for dual-active bridge converter in marine electromagnetic transmitter system. J. Power Electronics. 22, 351-362 (2022) https://doi.org/10.1007/s43236-021-00337-2
- Wang, Z.A., Liu, J.J.: Power electronics technology. Machinery Industry Press, Beijing (2017)
- Hu, H., Harb, S., Kutkut, N., et al.: A review of power decoupling techniques for microinverters with three different decoupling capacitor locations in PV systems. IEEE Trans. Power Electron. 28(6), 2711-2726 (2013) https://doi.org/10.1109/TPEL.2012.2221482
- Gao, Z.: Scaling and bandwidth-parameterization based controller tuning. Proc. Am. Control Confer. 6, 4989-4996 (2006)
- Liu, H., Liu, H., Shan, X.: Linear active disturbance rejection control with torque compensation for electric load simulator. J. Power Electronics. 21, 195-203 (2021) https://doi.org/10.1007/s43236-020-00168-7