DOI QR코드

DOI QR Code

AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES

  • Received : 2023.02.24
  • Accepted : 2023.06.22
  • Published : 2024.01.31

Abstract

Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite.

Keywords

Acknowledgement

The author is deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions.

References

  1. N. Abazari and K. Bahmanpour, Extension functors of local cohomology modules and Serre categories of modules, Taiwanese J. Math. 19 (2015), no. 1, 211-220. https://doi.org/10.11650/tjm.19.2015.4315
  2. K. Bahmanpour, On the category of weakly Laskerian cofinite modules, Math. Scand. 115 (2014), no. 1, 62-68. https://doi.org/10.7146/math.scand.a-18002
  3. K. Bahmanpour, Cohomological dimension, cofiniteness and Abelian categories of cofinite modules, J. Algebra 484 (2017), 168-197. https://doi.org/10.1016/j.jalgebra.2017.04.019
  4. K. Bahmanpour, On a question of Hartshorne, Collect. Math. 72 (2021), no. 3, 527-568. https://doi.org/10.1007/s13348-020-00298-y
  5. K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 (2009), no. 7, 1997-2011. https://doi.org/10.1016/j.jalgebra.2008.12.020
  6. K. Bahmanpour, R. Naghipour, and M. Sedghi, On the category of cofinite modules which is Abelian, Proc. Amer. Math. Soc. 142 (2014), no. 4, 1101-1107. https://doi.org/10.1090/S0002-9939-2014-11836-3
  7. K. Bahmanpour, R. Naghipour, and M. Sedghi, Modules cofinite and weakly cofinite with respect to an ideal, J. Algebra Appl. 17 (2018), no. 3, 1850056, 17 pp. https://doi.org/10.1142/S0219498818500561
  8. M. P. Brodmann and R. Y. Sharp, Local cohomology, second edition, Cambridge Studies in Advanced Mathematics, 136, Cambridge Univ. Press, Cambridge, 2013.
  9. G. Chiriacescu, Cofiniteness of local cohomology modules over regular local rings, Bull. London Math. Soc. 32 (2000), no. 1, 1-7. https://doi.org/10.1112/S0024609399006499
  10. D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 79-84. https://doi.org/10.1017/S0305004100071929
  11. D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1997), no. 1, 45-52. https://doi.org/10.1016/S0022-4049(96)00044-8
  12. K. Divaani-Aazar, H. Faridian, and M. Tousi, A new outlook on cofiniteness, Kyoto J. Math. 60 (2020), no. 3, 1033-1045. https://doi.org/10.1215/21562261-2021-0007
  13. R. Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer, Berlin, 1967.
  14. R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1969/70), 145-164. https://doi.org/10.1007/BF01404554
  15. E. Hatami and M. Aghapournahr, Abelian category of weakly cofinite modules and local cohomology, Bull. Iranian Math. Soc. 47 (2021), no. 6, 1701-1714. https://doi.org/10.1007/s41980-020-00467-6
  16. C. L. Huneke and J.-H. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421-429. https://doi.org/10.1017/S0305004100070493
  17. K.-I. Kawasaki, Cofiniteness of local cohomology modules for principal ideals, Bull. London Math. Soc. 30 (1998), no. 3, 241-246. https://doi.org/10.1112/S0024609397004347
  18. K.-I. Kawasaki, On the category of cofinite modules for principal ideals, Nihonkai Math. J. 22 (2011), no. 2, 67-71.
  19. K.-I. Kawasaki, On a category of cofinite modules which is Abelian, Math. Z. 269 (2011), no. 1-2, 587-608. https://doi.org/10.1007/s00209-010-0751-0
  20. T. Marley and J. C. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra 256 (2002), no. 1, 180-193. https://doi.org/10.1016/S0021-8693(02)00151-5
  21. H. Matsumura, Commutative ring theory, translated from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8, Cambridge Univ. Press, Cambridge, 1986.
  22. L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649-668. https://doi.org/10.1016/j.jalgebra.2004.08.037
  23. L. Melkersson, Cofiniteness with respect to ideals of dimension one, J. Algebra 372 (2012), 459-462. https://doi.org/10.1016/j.jalgebra.2012.10.005
  24. G. Pirmohammadi, K. Ahmadi-Amoli, and K. Bahmanpour, Some homological properties of ideals with cohomological dimension one, Colloq. Math. 149 (2017), no. 2, 225-238. https://doi.org/10.4064/cm6939-11-2016
  25. P. H. Quy, On the finiteness of associated primes of local cohomology modules, Proc. Amer. Math. Soc. 138 (2010), no. 6, 1965-1968. https://doi.org/10.1090/S0002-9939-10-10235-4
  26. K. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179-191. https://doi.org/10.1017/S0027763000006371